Forschung

Was die Forschung untersucht und herausfindet, wird durch  Wissenstransfer greifbar und verständlich.
Und ermöglicht so sinnvolles und effektives Handeln für die Meere .

Unterschätzte Gefahr und Ressource am Meeresgrund

Ein Dinoflagellaten der Gattung Gambierdiscus unter dem Rasterelektronenmikroskop

© Senckenberg Gesellschaft für Naturforschung

Pressemitteilung, 05.09.2023, Senckenberg Gesellschaft für Naturforschung

Neues Dinoflagellaten-Bestimmungsbuch beleuchtet die Bedeutung der marinen Einzeller für Wissenschaft und Gesellschaft

Heute legt die Meeresbiologin Dr. Mona Hoppenrath von Senckenberg am Meer in Wilhelmshaven gemeinsam mit internationalen Kolleg*innen die zweite, erweiterte Auflage des weltweit umfassendsten Bestimmungsbuchs für marine, benthisch lebende Dinoflagellaten vor: „Marine benthic dinoflagellates – their relevance for science and society“. Neben der Beschreibung zahlreicher neuer Arten, erstmals auch anhand molekulargenetischer Daten, ordnet das Buch die weltweiten Gefahren durch die oftmals toxischen Einzeller ein – aber auch ihren Nutzen für die Wissenschaft und als potenzielle Nährstoff- und Energielieferanten.

Die mikroskopisch kleinen Dinoflagellaten sind in der breiten Öffentlichkeit kaum bekannt, dabei ist ihr Einfluss auf Natur und Mensch beträchtlich. Weltweit in Salz- und Süßgewässern verbreitet spielen die winzigen Einzeller eine wichtige Rolle in aquatischen Nahrungsnetzen – die meisten Arten als Teil des Planktons, die benthischen in den Sedimenten am Meeresgrund oder epiphytisch auf Algen, Seegras oder Korallen. „Einige Arten produzieren Toxine, die beim Menschen ernsthafte Vergiftungen hervorrufen können und auch für andere Meeresorganismen schädlich sind“, erläutert Dr. Mona Hoppenrath, Wissenschaftlerin bei Senckenberg am Meer in Wilhelmshaven und Erstautorin des Buchs. „Durch den Verzehr von Fisch und anderen Meeresfrüchten können etwa über die Nahrungskette angereicherte Giftstoffe von Gambierdiscus-Arten die Ciguatera-Krankheit auslösen, eine der häufigsten Fischvergiftungen.“ Eine Algenblüte der Gattung Ostreopsis wiederum brachte in den 1990er-Jahren Hunderte von Urlauber*innen an der ligurischen Küste ins Krankenhaus. „Als Folge des Klimawandels werden solche Fälle wahrscheinlich immer häufiger vorkommen“, ergänzt Hoppenrath.

Der vorliegende Band zeigt eindrucksvoll den Artenreichtum der marinen Einzeller, sein größter Teil ist der Taxonomie benthischer Dinoflagellaten in ihrer erstaunlichen Formenvielfalt gewidmet. 242 Arten in 63 Gattungen werden im Detail vorgestellt, illustriert mit mehr als 240 Farbabbildungen, etwa 250 elektronenmikroskopischen Aufnahmen und mehr als 330 Zeichnungen. Seit dem Vorgänger „Marine benthic dinoflagellates – unveiling their worldwide biodiversity“ sind 64 neue Arten, 20 neue Gattungen und 19 neue Kombinationen – also Umbenennungen – hinzugekommen. „Gleichzeitig zeigen wir sicherlich nur die ‚Spitze des Eisbergs‘“, so Hoppenrath, „Es ist davon auszugehen, dass neben den etwa 2.500 bekannten lebenden Dinoflagellaten-Arten viele weitere existieren, die noch nicht beschrieben sind!“ Parallel zur Neuauflage werden über die Website des „Centre of Excellence for Dinophyte Taxonomy“ (CEDiT) Bestimmungshilfen und Matrixschlüssel zur Gattungs- und Art-Bestimmung abrufbar sein: www.dinophyta.org/identification-keys.

Neu ergänzt ist ein Kapitel zur Relevanz der Dinoflagellaten für Wissenschaft und Gesellschaft, das die Gefahren durch die Einzeller, aber auch ihren möglichen Nutzen beleuchtet. „Dass beispielsweise einige Arten der Gattung Gambierdiscus über den Verzehr bestimmter tropischer und subtropischer Fische und Meeresfrüchte die lebensbedrohliche Ciguatera-Vergiftung auslösen können, wissen wir seit den 1970er-Jahren. Viele Küstenländer haben in der Folge Überwachungsprogramme eingeführt. Weltweit werden jährlich circa 20.000 bis 60.000 Fälle registriert“, berichtet Hoppenrath. „Dabei ist die Dunkelziffer groß: Schätzungsweise gibt es allein in den USA knapp 16.000 Vergiftungen im Jahr – möglicherweise werden weltweit nur 10 Prozent der Fälle den Gesundheitsbehörden gemeldet.“ Der fortschreitende Klimawandel scheint das Problem noch zu verstärken: Korallenbleichen infolge steigender Meerestemperaturen und andere Beeinträchtigungen von Korallen-Ökosystemen führen offenbar zu einem verstärkten Vorkommen von Gambierdiscus, weshalb der Weltklimarat davon ausgeht, dass Ciguatera-Vergiftungen weiter zunehmen werden. Gleichzeitig gibt es Hinweise, dass sich Gambierdiscus inzwischen auch in gemäßigte Regionen ausgebreitet hat.

Neben den gesundheitlichen Gefahren verursachen die toxischen Einzeller auch beträchtliche wirtschaftliche Schäden. In den USA entstehen durch Ciguatera schätzungsweise 17 Millionen US-Dollar Gesundheitskosten im Jahr. Von Einfuhrverboten für Riff-Fische infolge gemeldeter Vergiftungen werden insbesondere kleine tropische und subtropische Inselstaaten empfindlich getroffen, die stark von der Fischerei abhängig sind.

Auf der anderen Seite können Dinoflagellaten aber auch eine für den Menschen nützliche Ressource sein, beispielsweise als Lieferanten von wichtigen ungesättigten Fettsäuren für eine ausgewogene Ernährung. „Die planktische Art Crypthecodinium cohnii wurde bereits in der industriellen Produktion von Omega-3- Fettsäure als Nahrungsergänzungsmittel verwendet“, erzählt Hoppenrath. „Größtenteils sind die Möglichkeiten der industriellen Verwendung benthischer Dinoflagellaten, die Omega-3-Fettsäuren in großen Mengen produzieren, aber noch weitgehend unerforscht – hier gibt es großes Potenzial.“ Auch Biokraftstoffe könnten möglicherweise aus bestimmten Arten gewonnen werden. In der medizinischen Forschung haben sich einige der toxischen Verbindungen wiederum als vielversprechend für die Entwicklung von Therapeutika, beispielsweise in der Krebstherapie, gezeigt.

„Nicht zuletzt und überraschenderweise haben sich benthische Dinoflagellaten in der Naturwissenschaft für die evolutionäre Grundlagenforschung als sehr nützlich und wichtig erwiesen – zum Beispiel bei der Erforschung der Photosynthese und verschiedener Prozesse in Zellkernen. Es sind faszinierende Lebewesen, die wir aus vielen Gründen weiter erforschen müssen!“, schließt Hoppenrath.

Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.

Das Bild zeigt die Aufnahme eines Dinoflagellaten unter dem Rasterelektronenmikroskop der Gattung Gambierdiscus, die Toxine produziert, die auch für den Menschen gefährlich werden können und sich aufgrund der Klimakrise zunehmend in die gemäßigten Zonen ausbreiten.

Hier findet ihr das Buch „Marine benthic dinoflagellates – their relevance for science and society“ von Dr. Mona Hoppenrath.

Obwohl Dinoflagellaten Einzeller sind, habt ihr die Art Lingulodinium polyedrum vielleicht schonmal nachts am Meer gesehen…

Polarstern erreicht Nordpol

Das Forschungsschiff Polarstern umgeben von Eis

© Alfred-Wegener-Institut / Mario Hoppmann (CC-BY 4.0)

Pressemitteilung, 08.09.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Forschungseisbrecher zum siebten Mal am nördlichsten Punkt der Erde

[08. September 2023] Fünf Wochen nach dem Ablegen im norwegischen Tromsø erreicht das Forschungsschiff Polarstern des Alfred-Wegener-Instituts Station den nördlichsten Punkt der Erde. Das internationale Team von Forschenden untersucht auch hier die Kopplung zwischen Meereis, Ozean und seinem Leben bis in die Tiefsee. Bislang lieferte die am 3. August 2023 gestartete Expedition Arcwatch-1 einige überraschende Entdeckungen: So zeichnet sich 2023 durch ungewöhnliche Eisdrift aus, die die Lebensgemeinschaften unter dem Eis beeinflusst. Zudem hat das Team eine erstaunliche Artenvielfalt an einem bislang unkartierten Seeberg in 1500 Meter Wassertiefe unter dem Eis entdeckt.

Am 3. August 2023 ist der Forschungseisbrecher Polarstern im norwegischen Tromsø in See gestochen, um zwei Monate lang im Arktischen Ozean zu forschen. Ziel der aktuellen ArcWatch-1-Expedition ist es, die Biologie, Chemie und Physik des Meereises sowie die Auswirkungen des Meereis-Rückgangs auf das gesamte Ozeansystem von der Oberfläche bis in die Tiefsee zu untersuchen sowie in bisher unkartierte Regionen vorzudringen.

Nach einem kurzen Zwischenstopp auf Spitzbergen erreichte die Polarstern am 6. August die Eiskante bei 81,5° Nord und 17° Ost. In den darauffolgenden Wochen wurden Eisstationen zunächst entlang 85°N im Nansen- und Amundsen-Becken des Arktischen Ozeans durchgeführt, und dann nördlich entlang 130° Ost. Die Expedition erreichte dabei Anfang September die Region, in der die MOSAiC-Drift-Expedition in 2019 startete. Über tausende von Quadratkilometern wurden bisher 50 Bojen und autonome Messstationen verteilt. Zudem wurden mit dem vom Helikopter geschlepptem Messsystem „IceBird“ Eisdickenmessungen durchgeführt und parallel mit Fernerkundungsmethoden die Dynamik der Meereisbedeckung großflächig untersucht. Für die mehrtägigen Eisstationen legte das Schiff jeweils an einer Scholle an, Forschende gingen auf das Eis, bauten autonome Beobachtungsstationen auf, erforschten die Unterseite der Scholle mit einem Roboter und zogen Eiskerne, um das Leben im Netzwerk der winzigen Meereiskanäle zu untersuchen. Vom Schiff aus beprobten sie den Ozean unter dem Eis bis hinunter zum Meeresboden und setzten dafür verschiedene Tiefsee-Technologien wie das am AWI entwickelte Kamera- und Sonarsystem „Ocean Floor Observation and Bathymetry“ System (OFOBS) ein.

Letzteres lieferte am 21. August eines der vielen bisherigen Highlights der Expedition. Mithilfe von OFOBS konnten die AWI-Forschenden einen 2500 Meter hohen, bislang unkartierten Seeberg vermessen. Seine Basis liegt in 4000 Metern Tiefe, seine Spitze reicht bis 1500 Meter Tiefe unter die Meeresoberfläche. „Am Gipfel des Seebergs wimmelt es nur so vor Leben“, sagt Antje Boetius, Direktorin des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), die die Expedition leitet. „Wir fanden hier riesige, fast einen halben Meter große Schwämme, die über und über besiedelt waren mit Würmern, Krebsen und Weichkorallen. Für uns sehr überraschend stießen wir aber auch auf unzählige Fische, Aalmuttern und Scheibenbäuche, die für ihre Antifrost-Proteine bekannt sind. Die wunderschönen apricot-farbenen, fast einen halben Meter großen Seeanemonen waren ein fantastischer Anblick.“

Ein Ziel der Expedition sind zudem Vergleiche zu früheren Untersuchungen aus dem Jahr 2012 wie auch zu Untersuchungen der MOSAiC-Expedition. Im Jahr 2012 war das Team – ebenfalls unter Leitung der AWI-Direktorin Antje Boetius – mit Polarstern während der größten Meereisschmelze seit Beginn der Satelliten-Aufzeichnungen unterwegs. Über eine riesige Fläche fielen damals Meereislebewesen ins Wasser und sanken in die Tiefsee – besonders die fadenbildende endemische Meereisdiatomee Melosira arctica. Bei der Zersetzung der Algenteppiche durch Meeresbodenbakterien entstanden Sauerstoffminima im Meeresboden der Arktis. Das Team konnte nun elf Jahre später feststellen, dass das wiederholte Ausschmelzen der Meereisalgen in den vergangenen Jahren die Zusammensetzung der Meeresbodengemeinschaft verändert hat: ehemals dominante Arten wie Haarsterne sind verschwunden, dafür gibt es deutlich mehr Ringel- und Borstenwürmer sowie Seegurken. Allerdings fehlt dieses Jahr die Meereisalge Melosira arctica in großen Bereichen des Untersuchungsgebietes – sowohl im Eis wie am Meeresboden. Antje Boetius fasst zusammen: „An die Orte wiederzukehren, die wir erstmals 2012 untersuchten und die damals aufgezeichneten Phänomene des Klimawandels weiter zu verfolgen, ist für mich das wesentliche Ziel der Expedition. Wir sind sehr überrascht von der diesjährigen Veränderung in der Kopplung zwischen Meereis, Ozean und Meeresboden. Und froh, dass der weltweit heißeste Sommer 2023 nicht zu einer neuen Rekordschmelze geführt hat, da die zentrale Arktis durch eine besondere Wetterlage geschützt war.“

Ergebnisse der Meereisphysik erklären die Beobachtungen: So zeigte sich in diesem Jahr schon früh eine Anomalie in der Eisdrift, die dickeres Eis aus der westlichen zentralen Arktis nach Süden drückte. In den Regionen, wo 2012 und 2020 während MOSAiC junges Eis vom sibirischen Schelf mit vielen Algen gefunden wurde, dominierte dieses Jahr stark aufgeschmolzenes zweijähriges Eis aus dem kanadischen Becken. In den Sinkstofffallen und am Meeresboden war daher kaum abgesunkenes Material aus dem Eis zu finden. Auch die Ozeanographen bemerkten eine Anomalie: Die Schichtung des Meerwassers unter dem Eis war lokal durch Schmelzprozesse oder Vermischung durch starken Wind ausgeprägt, zeigte jedoch vergleichsweise hohen Salzgehalt. Grund ist wahrscheinlich eine geringere Schmelze und reduzierter Eintrag des Süßwasser-reichen Sibirischen Schelfmeeres. Direkt unter dem Eis begegneten den Planktologinnen und Planktologen an jeder Station auch andere Schwärme von Tieren – wie Manteltiere, Quallen, Flügelschnecken, Flohkrebse und Ruderfußkrebse. Anders als in 2012 wurde kaum Export von Biomasse in die Tiefsee beobachtet. Denn auch am Ende der Schmelzsaison gibt es noch eine ausgeprägte Schneeschicht auf dem Meereis. Diese macht das Eis und den Ozean darunter recht dunkel und führt sogar zum Aufsteigen von Phyto- und Zooplankton aus tieferen Wasserschichten an die hellere Unterseite des Eises. Zudem gibt es kaum Schmelztümpel auf dem Meereis, die sonst charakteristisch für den arktischen Sommer sind.

Auch die Vergleiche mit der Ausdehnung des Meereises während der MOSAiC-Drift-Expedition 2019-2020 lassen vermuten, dass 2023 über beiden Rekordminima von 2012 und 2020 liegen wird. Trotz des – seit Beginn von Wetterbeobachtungen  – weltweit heißesten Sommers 2023 zeigt das Meereis der Arktis durchschnittlich sogar etwas höherer Dicken als in den vergangenen Jahren. Sowohl die Meereisphysikerinnen und Meereisphysiker als auch die Klimadynamikerinnen und Klimadynamiker erklären das Phänomen mit einem starken Tiefdruckeinfluss in der zentralen Arktis. Es bleibt noch abzuwarten, wie sich die Eisschmelze bis Mitte September zum Minimum der Eisausdehnung entwickeln wird. Die ersten Herbststürme transportieren gerade warme Luft in Richtung Arktis.

Gestern erreichte das AWI-Forschungsschiff planmäßig den Nordpol. Es ist das insgesamt siebte Mal, dass der Forschungseisbrecher Polarstern in seiner 42-jährigen Geschichte den nördlichsten Punkt der Erde erreicht. Zuletzt drang das Schiff am 18. August 2020 während der MOSAiC-Expedition mit dem Expeditionsleiter Markus Rex bis zum Nordpol vor. Gerade begannen die mehrtägigen Arbeiten der laufenden Expedition ArcWarch mit einem Tauchgang zum geographischen Pol bei 90°N in 4224 m Wassertiefe. Derzeit bauen die Wissenschaftlerinnen und Wissenschaftler ihre Observatorien auf der Eisscholle, im Ozean und am Meeresboden auf. Anschließend werden sie ihre Forschungsarbeiten entlang des 60. Breitengrads fortsetzen. Die Polarstern wird am 1. Oktober 2023 wieder in Bremerhaven zurückerwartet.

Dabei ist auch ein Kamerateam der UFA Documentary GmbH, das die Expedition filmisch begleitet. Geplant ist die Ausstrahlung der in Kooperation mit dem NDR entstehenden Fernseh-Dokumentation für den Jahreswechsel in der ARD. Bereits während der Expedition können Interessierte im Hörfunkprogramm von Radio Bremen Eindrücke von Bord gewinnen und die Expedition natürlich auch in der Polarstern-Web-App und auf den Social-Media-Kanälen des Alfred-Wegener-Instituts verfolgen.

Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Am 03. August 2023 ist die Polarstern in Richtung Nordpol aufgebrochen, um im Rahmen von ArcWatch 1 die Biologie, Chemie und Physik des Meereises und die Auswirkungen der Klimakrise auf das arktische Ökosystem zu untersuchen.

Ko­ral­len­rif­fe als ein Fens­ter in die Ver­gan­gen­heit und Zu­kunft

Eine Steinkoralle in den Gewässern vor Hawai'i

© Andy Collins, NOAA / Wikimedia Commons (PD)

Pressemitteilung, 31.08.2023, MARUM

In­ter­na­tio­na­le Ex­pe­di­ti­on vor der Küs­te von Ha­wai’i ge­star­tet

Ein Blick zu­rück auf die Um­welt­ver­än­de­run­gen im Lau­fe der Erd­ge­schich­te kann uns viel über die Zu­kunft ver­ra­ten – ins­be­son­de­re, wenn es um glo­bal und ge­sell­schaft­lich wich­ti­ge The­men wie den Mee­res­spie­gel, den Kli­ma­wan­del und die Ge­sund­heit des Ko­ral­len­riff-Öko­sys­tems geht. Eine in­ter­na­tio­na­le wis­sen­schaft­li­che For­schungs­ex­pe­di­ti­on, die im Auf­trag des In­ter­na­tio­nal Oce­an Dis­co­very Pro­gram (IODP) durch­ge­führt wird, zielt dar­auf ab, die Kli­ma- und Riff­be­din­gun­gen der Ver­gan­gen­heit vor der Küs­te von Hawai’i (USA) auf­zu­zeich­nen. Die zwei­mo­na­ti­ge For­schungs­ex­pe­di­ti­on wird Ende Au­gust den Ha­fen von Ho­no­lu­lu ver­las­sen.

Ko­ral­len­rif­fe re­agie­ren sehr emp­find­lich auf den Mee­res­spie­gel und an­de­re Ver­än­de­run­gen der Um­welt­be­din­gun­gen. Als Fos­si­li­en hal­ten sie eine Auf­zeich­nung ver­gan­ge­ner Be­din­gun­gen über Hun­der­te, Tau­sen­de und Mil­lio­nen Jah­re der Erd­ge­schich­te be­reit. In den welt­wei­ten Auf­zeich­nun­gen der ver­gan­ge­nen 500.000 Jah­re gibt es je­doch Un­ter­bre­chun­gen, vor al­lem wäh­rend Zei­ten, in de­nen das Kli­ma plötz­lich sehr in­sta­bil wur­de. IODP-Ex­pe­di­ti­on 389 „Ha­wai’i­an Drow­ned Reefs“ ( „Ver­sun­ke­ne ha­waii­ani­sche Rif­fe“) kon­zen­triert sich auf die­ses feh­len­de Glied. Wis­sen­schaft­li­che Fahrt­lei­ten­de sind Pro­fes­sor Chris­ti­na Ra­ve­lo (Oce­an Sci­en­ces De­part­ment an der Uni­ver­si­ty of Ca­li­for­nia, San­ta Cruz, USA) und Pro­fes­sor Jody Webs­ter (School of Geo­sci­en­ces), der Uni­ver­si­ty of Syd­ney, Aus­tra­li­en).

Prof. Chris­ti­na Ra­ve­lo: „Die fos­si­len Rif­fe von Hawai’i sind Ge­schich­ten­er­zäh­ler der ver­gan­ge­nen Kli­ma- und Oze­an­ver­än­de­run­gen und der Re­ak­tio­nen des Riff­öko­sys­tems auf die­se Ver­än­de­run­gen. Wir möch­ten die­se Ge­schich­ten durch sorg­fäl­ti­ge Un­ter­su­chung der Fos­si­li­en, die wir zu ber­gen hof­fen, auf­de­cken und tei­len.“

Prof. Jody Webs­ter: „Wir hof­fen, dass die in den fos­si­len Rif­fen auf­ge­zeich­ne­ten In­for­ma­tio­nen den Wis­sen­schaft­lern hel­fen wer­den, bes­se­re Vor­her­sa­gen über Ge­schwin­dig­keit und Aus­maß des Mee­res­spie­gel­an­stiegs zu tref­fen, wel­che Aus­wir­kun­gen die glo­ba­le Er­wär­mung und Ab­küh­lung auf kurz­fris­ti­ge Kli­ma­phä­no­me­ne wie Dür­ren, Über­schwem­mun­gen und ma­ri­ne Hit­ze­wel­len hat, und wie Ko­ral­len­riff-Öko­sys­te­me auf die­se Ver­än­de­run­gen re­agie­ren.“

Dr. Tho­mas Fe­lis, Lei­ter der Ar­beits­grup­pe Ko­ral­len-Pa­läo­kli­ma­to­lo­gie am MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten der Uni­ver­si­tät Bre­men, ist Mit­glied des Ex­pe­di­ti­ons­teams. „Nach frü­he­ren Ko­ral­len­riff-Bohr­ex­pe­di­tio­nen zum Gre­at Bar­ri­er Reef und nach Ta­hi­ti, an de­nen ich be­tei­ligt war, bie­tet sich nun in Hawai’i die ein­ma­li­ge Ge­le­gen­heit, noch viel wei­ter in die Ver­gan­gen­heit zu­rück­zu­ge­hen, hof­fent­lich bis zu ei­ner hal­ben Mil­li­on Jah­re“, sagt Tho­mas Fe­lis. Er ko­or­di­niert auch das DFG-Schwer­punkt­pro­gramm „Tro­pi­sche Kli­ma­va­ria­bi­li­tät & Ko­ral­len­rif­fe“ (SPP 2299), ein deutsch­land­wei­tes Ver­bund­pro­jekt, das ein bes­se­res Ver­ständ­nis der Kli­ma­va­ria­bi­li­tät in den tro­pi­schen Ozea­nen und ih­rer Aus­wir­kun­gen auf das Öko­sys­tem der Ko­ral­len­rif­fe in ei­ner sich er­wär­men­den Welt zum Ziel hat. „Ich freue mich sehr, dass vier For­schen­de aus un­se­rem Pro­gramm ein­ge­la­den wur­den, zur IODP-Ex­pe­di­ti­on 389 nach Hawai’i bei­zu­tra­gen“, so Fe­lis.

Ziel der Ex­pe­di­ti­on ist es, Bohr­ker­ne aus Was­ser­tie­fen zwi­schen 134 und 1.155 Me­tern an zwan­zig Stel­len zu ber­gen. Auch wenn dies das ers­te Mal ist, dass in die­sem Ge­biet ein Oze­an­bo­den­bohr­ge­rät ein­ge­setzt wird, sind die ge­plan­ten Lo­ka­tio­nen gut un­ter­sucht. „Wir ha­ben eine sehr gute Vor­stel­lung da­von, wie der Mee­res­bo­den vor der Küs­te von Hawai’iaus­sieht, Wis­sen­schaft­ler:in­nen ha­ben in den letz­ten vier Jahr­zehn­ten mit Tauch­boo­ten und fern­ge­steu­er­ten Tauch­ro­bo­tern um­fang­rei­chen Kar­tie­run­gen mit Un­ter­was­ser­so­na­ren so­wie Film­ma­te­ri­al und Ober­flä­chen­pro­ben ge­sam­melt“, sagt Jody Webs­ter. „Die­se In­for­ma­tio­nen ha­ben uns ge­hol­fen, die bes­ten Lo­ka­tio­nen für die sorg­fäl­ti­ge Ge­win­nung der Ker­ne aus­zu­wäh­len, die un­ser Ver­ständ­nis der Ge­schich­te des Riff­sys­tems er­heb­lich ver­tie­fen wer­den“, fügt Chris­ti­na Ra­ve­lo hin­zu.

Die Uni­ver­si­tät von Hawai’i ist eine Part­ner­in­sti­tu­ti­on die­ser Ex­pe­di­ti­on und ver­fügt über eine lan­ge Tra­di­ti­on in der Wis­sen­schaft in den Be­rei­chen Ko­ral­len­rif­fe, Küs­ten­phä­no­me­ne und Küs­ten­geo­lo­gie. Ha­wai’ia­ni­sche Wis­sen­schaft­ler ha­ben den An­stieg des Mee­res­spie­gels und sei­ne Aus­wir­kun­gen un­ter­sucht und her­vor­ge­ho­ben, wie wich­tig die­ses Wis­sen für das For­mu­lie­ren ei­ner Stra­te­gie zur Ein­däm­mung des Kli­ma­wan­dels und zur Stär­kung der Resi­li­enz in der Zu­kunft ist. Prof. Ken­na Ru­bin, an­or­ga­ni­sche Geo­che­mi­ke­rin an der Uni­ver­si­ty of Ha­wai’i at Ma­noa, De­part­ment of Earth Sci­en­ces, war von An­fang an an der Pla­nung der Ex­pe­di­ti­on be­tei­ligt und wird eine wich­ti­ge Teil­neh­me­rin sein.

Prof. Ken­na Ru­bin: „Die de­tail­lier­ten, hoch­auf­lö­sen­den zeit­li­chen und zu­sam­men­ge­setz­ten Ab­fol­gen, die wir von die­ser Ex­pe­di­ti­on er­war­ten, wer­den un­ser Wis­sen über die Re­ak­tio­nen auf den Kli­ma­wan­del er­heb­lich er­wei­tern und For­schen­den hel­fen, die vul­ka­ni­sche Ab­sen­kungs­ge­schich­te von ‚Big Is­land‘ bes­ser zu ver­ste­hen.“ Die Aus­wir­kun­gen die­ser For­schung in Hawai’i wer­den zu be­ste­hen­den Stu­di­en über Mee­res­spie­gel­ver­än­de­run­gen bei­tra­gen, wie sie hier von Ko­ral­len­rif­fen auf­ge­zeich­net wer­den.“

Die wis­sen­schaft­li­chen Zie­le der Ex­pe­di­ti­on zie­len dar­auf ab, Fra­gen zu vier Haupt­the­men zu be­ant­wor­ten:

  • Das Ausmaß der Meeresspiegelveränderung in den letzten halben Million Jahren zu messen
  • Warum sich Meeresspiegel und Klima im Laufe der Zeit ändern zu untersuchen
  • Wie Korallenriffe auf abrupte Meeresspiegel- und Klimaveränderungen reagieren zu erforschen, und
  • Die wissenschaftlichen Erkenntnisse über Wachstum und Absenkung von Hawai’i im Laufe der Zeit zu verbessern.

Die Pla­nungs­pha­se der Ex­pe­di­ti­on um­fass­te in­ten­si­ve Um­welt­be­ob­ach­tun­gen und eine um­fas­sen­de Ri­si­ko­be­wer­tung.

Um das Ma­te­ri­al, das die Wis­sen­schaft­ler:in­nen für ihre Ana­ly­sen in den kom­men­den Jah­ren nut­zen wer­den, zu ge­win­nen, wird wäh­rend der Ex­pe­di­ti­on auf dem Mehr­zweck­schiff MMA VA­LOUR ein Mee­res­bo­den­bohr­ge­rät ein­ge­setzt. Das Mee­res­bo­den­bohr­ge­rät wird von ei­nem re­nom­mier­ten Spe­zia­lis­ten der Geo­tech­nik­in­dus­trie be­reit­ge­stellt und be­trie­ben. Es wird auf den Mee­res­bo­den ab­ge­senkt, um bis zu 110 Me­ter lan­ge Bohr­ker­ne aus dem Oze­an­bo­den zu ber­gen.

Die MMA VA­LOUR ist ein viel­sei­ti­ges Mehr­zweck-Ver­sor­gungs­schiff, das MMA Off­shore ge­hört und von MMA Off­shore be­trie­ben wird, ei­nem welt­weit füh­ren­den An­bie­ter von See- und Un­ter­was­ser­dienst­leis­tun­gen. MMA mit Haupt­sitz in Perth, Aus­tra­li­en, en­ga­giert sich für den Schutz der Mee­resöko­sys­te­me der Welt und die Un­ter­stüt­zung wich­ti­ger wis­sen­schaft­li­cher For­schung in die­sem Be­reich.

An der Ex­pe­di­ti­on wer­den 29 Wis­sen­schaft­ler:in­nen aus Aus­tra­li­en, Öster­reich, Chi­na, Dä­ne­mark, Frank­reich, Deutsch­land, In­di­en, Ja­pan, den Nie­der­lan­den, Groß­bri­tan­ni­en und den Ver­ei­nig­ten Staa­ten von Ame­ri­ka teil­neh­men. Zehn von ih­nen wer­den an Bord der MMA VA­LOUR sein und am 31. Au­gust den Ha­fen von Ho­no­lu­lu ver­las­sen. Die Off­shore-Pha­se der Ex­pe­di­ti­on en­det am 31. Ok­to­ber. Alle Mit­glie­der der Wis­sen­schafts­grup­pe wer­den sich zur Ons­hore-Pha­se im Bre­mer IODP Bohr­kern­la­ger (BCR) am MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten der Uni­ver­si­tät Bre­men (Deutsch­land) tref­fen um die Ker­ne zu öff­nen, zu ana­ly­sie­ren, zu be­pro­ben und die im Fe­bru­ar 2024 ge­sam­mel­ten Da­ten aus­zu­wer­ten. „Das Tref­fen im Fe­bru­ar in Bre­men bie­tet die Mög­lich­keit, dass alle Wis­sen­schaft­ler:in­nen der in­ter­na­tio­na­len und in­ter­dis­zi­pli­nä­ren Ex­pe­di­ti­on erst­ma­lig zu­sam­men kom­men und Kol­la­bo­ra­tio­nen in­ten­si­viert oder so­gar erst in­iti­iert wer­den“, sagt Dr. Ur­su­la Röhl, Wis­sen­schaft­le­rin am MARUM und Lei­te­rin des Bre­mer Bohr­kern­la­gers. „Im Mo­ment ist ein Teil des Bre­mer Kern­la­ger-Teams mit an Bord, um die Bohr­ker­ne und Pro­ben­ma­te­ri­al fach­ge­recht zu ku­ra­tie­ren und ers­te Mes­sun­gen zu be­glei­ten“, fügt sie wei­ter hin­zu.

Die Ker­ne wer­den ar­chi­viert und der wis­sen­schaft­li­chen Ge­mein­schaft nach ei­ner ein­jäh­ri­gen Mo­ra­to­ri­ums-Pe­ri­ode nach der Ons­hore-Pha­se der Ex­pe­di­ti­on für wei­te­re wis­sen­schaft­li­che For­schun­gen zu­gäng­lich ge­macht. Alle Ex­pe­di­ti­ons­da­ten wer­den öf­fent­lich zu­gäng­lich sein und die dar­aus re­sul­tie­ren­den Er­geb­nis­se wer­den ver­öf­fent­licht.

Die Ex­pe­di­ti­on wird vom Eu­ro­pean Con­sor­ti­um for Oce­an Re­se­arch Dril­ling (ECORD) im Rah­men des In­ter­na­tio­nal Oce­an Dis­co­very Pro­gram (IODP) durch­ge­führt. IODP ist ein öf­fent­lich fi­nan­zier­tes in­ter­na­tio­na­les Mee­res­for­schungs­pro­gramm, das von 21 Län­dern un­ter­stützt wird und die in Se­di­men­ten und Ge­stei­nen des Mee­res­bo­dens auf­ge­zeich­ne­te Erd­ge­schich­te und -dy­na­mik er­forscht und die Um­ge­bun­gen un­ter dem Mee­res­bo­den über­wacht. Über meh­re­re Platt­for­men – eine ein­zig­ar­ti­ge Funk­ti­on von IODP – un­ter­su­chen Wis­sen­schaft­ler:in­nen die tie­fe Bio­sphä­re und den Oze­an un­ter dem Mee­res­bo­den, Um­welt­ver­än­de­run­gen, Pro­zes­se und Aus­wir­kun­gen so­wie Zy­klen und Dy­na­mik der fes­ten Erde.

Der ECORD Sci­ence Ope­ra­tor ver­fügt über gro­ße Er­fah­rung in der Ar­beit mit sen­si­blen Öko­sys­te­men wie Ko­ral­len­rif­fen, nach­dem See-Ex­pe­di­tio­nen be­reits zum Gre­at Bar­ri­er Reef (Aus­tra­li­en, 2010) und nach Ta­hi­ti (2005) durch­ge­führt wur­den.

Diese Pressemitteilung findet ihr beim MARUM.

Besonders gefährdet sind die artenreichen Riffökosysteme durch Extremwetterereignisse wie Zyklone und Hitzewellen, die aufgrund der Klimakrise immer häufiger und mit größerer Intensität auftreten.

Im Jahr 2022 hat sich DEEPWAVE für sein Filmfestival in Bremen mit dem 15. Internationalen Korallenriff-Symposium (ICRS), der größten Konferenz für Korallenforscher:innen zusammengetan und das Filmfestival „Saving Corals“ auf die Beine gestellt.

Meereisrückgang lässt Zooplankton künftig länger in der Tiefe bleiben

Verschiedenes Zooplankton unter dem Mikroskop

© Matt Wilson/Jay Clark, NOAA NMFS AFSC / Wikimedia Commons (PD)

Pressemitteilung, 28.08.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Neue Studie zeigt: Klimawandel verändert saisonale Vertikalwanderung von Zooplankton in der Arktis

[28. August 2023] Sonnenlicht kann wegen der zunehmenden Meereisschmelze in der Arktis immer tiefer in den Ozean eindringen. Weil sich das Zooplankton im Meer an den Lichtverhältnissen orientiert, verändert sich dadurch auch sein Verhalten – vor allem dabei der Auf- und Abstieg der winzigen Tiere innerhalb der Wassersäule. Wie ein internationales Forschungsteam unter Leitung des Alfred-Wegener-Instituts nun zeigt, könnte dies in Zukunft zu häufigeren Hungerphasen beim Zooplankton und zu negativen Effekten bis hin zu Robben und Walen führen. Die Studie ist im Fachmagazin Nature Climate Change erschienen.

Ausdehnung und Dicke des Meereises in der Arktis schwinden in Folge des menschengemachten Klimawandels deutlich. So schrumpft die durchschnittliche Fläche des Eises derzeit um etwa 13 Prozent pro Dekade. Schon 2030 – so zeigen es aktuelle Studien und Modellrechnungen – könnte der Nordpol im Sommer erstmals eisfrei sein. Die physikalischen Umweltbedingungen für das Leben im Nordpolarmeer ändern sich dadurch ebenso deutlich. Das Sonnenlicht etwa kann bei schrumpfender und dünnerer Eisdecke viel tiefer in das Wasser des Ozeans eindringen. In der Folge kann etwa die Primärproduktion – also das Wachstum – von Mikroalgen in Wasser und Eis unter bestimmten Bedingungen stark ansteigen. Wie sich die veränderten Lichtbedingungen auf höhere trophische Ebenen der Nahrungskette – wie beispielsweise das sich unter anderem von Mikroalgen ernährende Zooplankton – auswirken, ist bislang noch nicht gut verstanden. Ein internationales Forschungsteam um Dr. Hauke Flores vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) hat nun einen wichtigen wissenschaftlichen Baustein für ein besseres Verständnis geliefert.

„In den Ozeanen findet jeden Tag die gewaltigste synchrone Massenbewegung von Organismen auf dem Planeten statt“, sagt Hauke Flores. „Und das ist die tägliche Wanderung des Zooplanktons, zu dem etwa die winzigen Copepoden, auch bekannt als Ruderfußkrebse, und der Krill zählen. Nachts kommt das Zooplankton nah an die Wasseroberfläche, um zu fressen. Tagsüber wandert es wieder in die Tiefe, um sich vor Fressfeinden zu schützen. Einzelne Organismen des Zooplanktons sind zwar winzig, in der Summe aber ergibt sich so eine enorme tägliche Vertikalbewegung von Biomasse in der Wassersäule. In den Polargebieten sieht diese vertikale Wanderung allerdings anders aus. Sie ist hier saisonal, das heißt, dass das Zooplankton einem jahreszeitlichen Zyklus folgt. In der monatelangen Helligkeit des Polartags im Sommer bleibt das Zooplankton dauerhaft in größeren Tiefen, in der monatelangen Dunkelheit der Polarnacht im Winter kommt ein Teil des Zooplanktons dann dauerhaft in das oberflächennahe Wasser direkt unter dem Eis.“

Ganz wesentlich bestimmt werden sowohl die tägliche Wanderung in niedrigen Breiten als auch die saisonale Wanderung in den Polargebieten vom Sonnenlicht. Die winzigen Tiere mögen es meist dämmrig. Sie bleiben gern unterhalb einer bestimmten Lichtintensität (kritisches Isolumen), die meist sehr niedrig ist und weit im dunklen Dämmerlichtbereich liegt. Wenn sich im Laufe des Tages oder der Jahreszeiten die Sonnenlichtintensität ändert, folgt das Zooplankton dem Isolumen, was letztlich dann zum Auf- und Absteigen in der Wassersäule führt. „Speziell im Bereich der oberen 20 Meter Wassersäule direkt unter dem Meereis fehlten bislang Daten zum Zooplankton“, erläutert Hauke Flores. „Genau dieser schwer für Messungen erreichbare Bereich ist aber der spannendste, weil genau hier im und unter dem Eis die Mikroalgen wachsen, von denen sich das Zooplankton ernährt.“ Um hier zu messen, konstruierte das Team ein autonomes biophysikalisches Messobservatorium, das sie am Ende der MOSAiC-Expedition des AWI-Forschungseisbrechers Polarstern im September 2020 unter dem Eis verankerten. Das Gerät konnte hier – fernab jeder Lichtverschmutzung durch menschliche Aktivitäten – kontinuierlich die Lichtintensität unter dem Eis und die Bewegungen des Zooplanktons messen.

„Im Ergebnis konnten wir ein sehr niedriges kritisches Isolumen für das Zooplankton von 0,00024 Watt/Quadratmeter bestimmen“, sagt der AWI-Forscher. „Diesen Wert haben wir dann in unsere Computermodelle integriert, die das Meereissystem simulieren. So haben wir dann für verschiedene Klimaszenarien berechnet, wie sich die Tiefe dieses Isolumens bis zur Mitte dieses Jahrhunderts verändert, wenn das Meereis in Folge des fortschreitenden Klimawandels immer dünner wird.“ Dabei zeigte sich, dass das kritische Isolumen wegen der immer weiter abnehmenden Eisdicke immer früher im Jahr in größere Tiefen absinkt und immer später im Jahr wieder die Oberflächenschicht erreicht. Da das Zooplankton grundsätzlich unterhalb des kritischen Isolumens bleibt, wird es dieser Bewegung folgen. Deshalb hält es sich in den Zukunftsszenarien immer länger in größeren Tiefen auf und seine Zeit im Winter unter dem Eis wird immer kürzer.

„Künftig wird sich in einem wärmeren Klima das Eis im Herbst später bilden, was zu einer geringeren Eisalgenproduktion führt“, erklärt Hauke Flores. „In Kombination mit dem späteren Aufstieg kann das beim Zooplankton im Winter häufiger zu Nahrungsmangel führen. Im Gegenzug kann ein früherer Abstieg des Zooplanktons im Frühjahr eine Gefährdung für tiefer lebende Jungstadien von ökologisch wichtigen Zooplanktonarten bewirken, die dann vermehrt von den ausgewachsenen Tieren gefressen werden könnten.“

„Insgesamt zeigt unsere Studie einen bisher nicht beachteten Mechanismus auf, über den sich die Überlebenschancen des Zooplanktons in der Arktis in naher Zukunft weiter verschlechtern könnten“, sagt der AWI-Forscher. „Dies hätte fatale Auswirkungen auf das ganze Ökosystem bis hin zu Robben, Walen und Eisbären. Unsere Modellsimulationen zeigen aber auch, dass sich die Vertikalwanderung bei Einhaltung des 1,5 Grad-Ziels wesentlich weniger verschiebt als bei einem ungebremsten Fortschreiten der Treibhausgasemissionen. Deswegen ist für das arktische Ökosystem jedes Zehntel Grad weniger menschengemachte Erwärmung von entscheidender Bedeutung.“

Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Die Originalpublikation „Sea-ice decline makes zooplankton stay deeper for longer“ findet ihr bei Nature Climate Change.

Die Umweltveränderungen durch die Klimakrise bedrohen das arktische Ökosystem auf vielen verschiedenen, zusammenhängenden Ebenen. Diese werden gerade auf der Polarstern-Expedition ArcWatch 1 untersucht. Auch die Polardorschbestände werden durch den Rückgang der Meereisbedeckung erheblich negativ beeinflusst.

Klimawandel bedroht Polardorschbestände in der Arktis

Ein kleiner Polardorsch im Eis

© Shawn Harper, Hidden Ocean 2005 Expedition: NOAA Office of Ocean Exploration / Wikimedia Commons (CC BY 2.0)

Pressemitteilung, 09.08.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Forschende befürchten erhebliche Folgen von steigenden Temperaturen und Meereisrückgang für den wichtigsten Fisch im Nordpolarmeer

[09. August 2023] Der Polardorsch ist der am häufigsten vorkommende Fisch im Arktischen Ozean. Er ist wichtige Nahrungsgrundlage für arktische Meeressäuger und spielt auch bei der Selbstversorgung der Inuit eine wichtige Rolle. Ein internationales Studienteam, darunter auch Forschende des Alfred-Wegener-Instituts, hat nun die wichtigsten wissenschaftlichen Arbeiten zum Polardorsch der vergangenen Jahrzehnte ausgewertet. Das Fazit: Vor allem der bereits weit fortgeschrittene Rückgang der arktischen Meereisbedeckung in Folge des menschengemachten Klimawandels könnte sich erheblich auf die künftige Verbreitung der Art auswirken. Die Studie wurde im Fachmagazin Elementa: Science of the Anthropocene veröffentlicht.

Der Polardorsch (Boreogadus saida) ist eng mit dem atlantischen Kabeljau verwandt und lebt im arktischen Ozean rund um den Nordpol. Als wichtige Nahrungsquelle für Meeressäuger (Ringelrobben, Narwale, Belugas) und Seevögel spielt er eine zentrale Rolle im arktischen Ökosystem. Zudem wird er von den Inuit in Kanada und auf Grönland genutzt.

Ein Forschungsteam hat nun 395 wissenschaftliche Artikel zum Polardorsch und zum Einfluss von Klimawandel und menschlichen Aktivitäten auf dessen Populationen ausgewertet, die zwischen 1954 und heute erschienen sind. Geleitet wurde das internationale Konsortium – 43 Forschende aus 26 Instituten – von Studienerstautor Dr. Maxime Geoffroy, Meeresbiologe am Fisheries and Marine Institute der Memorial University of Newfoundland in Kanada.

„Unsere Ergebnisse zeigen, dass dringend gehandelt werden muss, um die Auswirkungen des Klimawandels auf die arktischen Polardorschbestände abzuschwächen“, sagt Maxime Geoffroy. „Die Veränderungen betreffen nicht nur den am häufigsten vorkommenden Fisch der Arktis, sondern stören auch das empfindliche Gleichgewicht des gesamten arktischen Ökosystems.“

Ein wichtiger Bestandteil der Studie war die von Dr. Hauke Flores, Meeresbiologe am Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- Meeresforschung, koordinierte Bewertung der Zukunftsaussichten für den Polardorsch bis zur Mitte dieses Jahrhunderts. „Es war eine ziemliche Herausforderung, so viele Perspektiven auf die Auswirkungen der Klimakrise und anderer Stressfaktoren auf den Polardorsch zusammenzubringen“, sagt Hauke Flores. „Aber es gab einige klare Ergebnisse. Der Rückgang des Meereises und die Erwärmung der Ozeane sind die größten Bedrohungen für die Zukunft des Polardorschs. Die jüngsten Lebensstadien sind dabei am anfälligsten. Das Meereis ist für diesen Fisch sehr wichtig. Den Eiern und bis zu zwei Jahre alten Jungfischen bietet es Schutz vor Räubern. Umgekehrt finden die Jungfische unter dem Eis selbst im Winter Nahrung. Der Meereisrückgang hat daher nicht nur künftig, sondern auch heute schon erhebliche Auswirkungen auf den Polardorsch.“

Die wichtigsten Studienergebnisse zusammengefasst:

Lebensraumverlust: Steigende Temperaturen und schrumpfendes Meereis stellen eine erhebliche Bedrohung für den Lebensraum des Polardorschs dar, insbesondere für seine Eier und Larven. Diese Veränderungen beeinträchtigen die Fortpflanzungszyklen, die Überlebenschancen, das Wachstum, die Verbreitung und die Ernährungsfähigkeit der ganzen Art.

Veränderte Nahrungsverfügbarkeit: Der Klimawandel führt dazu, dass sich die Zusammensetzung des Zooplanktons als Nahrung für die Larven und Jungtiere des Polardorschs ändert. Dies kann zu geringeren Wachstumsraten und einer höheren Sterblichkeit der Larven und letztlich zu einem Rückgang der Bestände führen.

Zunehmende Prädation und Konkurrenz: Mit dem Rückgang des Meereises ist der Polardorsch verstärkt Raubtieren und Konkurrenten aus dem Nordatlantik und dem nördlichen Pazifik ausgesetzt. Seevogelarten und größere Fischarten aus südlich gelegenen Regionen dehnen ihr Verbreitungsgebiet auch auf bisher unzugängliche Gebiete aus. Dieser erhöhte Raubtier- und Konkurrenzdruck könnte kaskadenartige Auswirkungen auf das gesamte Ökosystem haben.

Erhöhte Risiken durch Förderung/Transport von Öl und Gas: Insbesondere mögliche Ölverschmutzungen an der Meeresoberfläche können zu höherer Sterblichkeit, verringertem Wachstum und mehr Missbildungen bei Polardorschen führen.

Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Mithilfe von alter DNA aus dem Meeresgrund hat ein Team vom Alfred-Wegener-Institut in Potsdam herausgefunden, dass sich in der Vergangenheit beim Übergang von saisonal vereisten zu eisfreien Bedingungen das gesamte Ökosystem verändern kann – und was wir daraus für die Zukunft unserer von der Klimakrise bedrohten Meere lernen können.

Wissenschaftler:innen entdecken ein neues Ökosystem unter hydrothermalen Schloten

Viele Röhrenwürmer wachsen an Hydrothermalquellen

© NOAA Okeanos Explorer Program, Galapagos Rift Expedition 2011 / Wikimedia Commons (PD)

Die Tiefsee ist eine weithin unbekannte Welt für uns. Unbekannter als der Mond. Nur 5% der Tiefsee gelten als erforscht. Viele systemische Zusammenhänge sind noch nicht verstanden und etliche Arten noch nicht entdeckt. Auf ein weiteres Puzzleteil ist nun ein internationales Forschungsteam um die Meeresbiologin Monika Bright von der Universität Wien gestoßen. Sie haben ein gänzlich neues unterirdisches Ökosystem gefunden– in Hohlräumen unter Hydrothermalquellen. Damit bilden Hydrothermalquellen nicht nur ein Ökosystem an ihrer jeweiligen Oberfläche, auch in der Erdkruste unter den Schloten wurden Schnecken, Würmer und chemosynthetische Bakterien entdeckt, die ein eigenes Ökosystem bilden. Dabei scheinen die oberirdischen und unterirdischen Lebensräume an den Quellen aufeinander abgestimmt zu sein, wobei weitere Forschungsergebnisse noch etwas mehr Zeit benötigen.

Was diese Entdeckung aber bereits jetzt für uns bedeutet, zeigt sich, wenn wir über unseren Umgang mit den Meeren nachdenken. Nicht nur die Erderwärmung, sich anreicherndes Plastik oder anderer abgekippter Müll und Abwässer stören das größte Ökosystem der Erde – die Tiefsee. Obwohl wir noch so wenig wissen und auch noch nicht im mindesten verstanden haben, wie die vielen kleinen Ökosysteme zum größten Ökosystem zusammenwirken, planen Staaten und Unternehmen seit Jahren massive Eingriffe. Der Tiefseebergbau ist hier wohl das prägnanteste Beispiel. Ohne zu wissen, was wir zerstören, und im Bewusstsein, dass der Raubbau am Meeresboden irreversible Schäden für das gesamte Ökosystem bedeutet und damit auch ganz direkt uns betrifft, wird die Entwicklung des Tiefseebergbaus weiterhin vorangetrieben. Die Funde des internationalen Forschungsteams zeigen uns eines ganz deutlich: die Tiefsee kann uns noch vieles an Schätzen offenbaren – diese liegen jedoch nicht in Knollenform am Meeresgrund. Damit solche Puzzlesteine wie von diesem Forscherteam auch auf weiteren Expeditionen gefunden und in das Bild vom Ökosystem Tiefsee eingefügt werden können, muss das Vorsorgeprinzip und der Schutz der Meere oberstes Gebot sein.

Die zugehörige Pressemitteilung „Wissenschafter*innen entdecken ein neues Ökosystem unter hydrothermalen Schloten“ vom 08.08.2023 findet ihr bei der Universität Wien.

In den unbekannten Welten der Tiefsee werden immer wieder neue Ökosysteme und Arten entdeckt. Erst kürzlich wurde in der Clarion-Clipperton-Zone eine gigantische Artenvielfalt von über 5000 Arten gefunden, von denen bisher über 90% noch nicht wissenschaftlich beschrieben sind und nur in dieser Region vorkommen.

Aussterbe-Warnung für den Vaquita

Ein Vaquita schwimmt an der Wasseroberfläche

© Paula Olson, NOAA / Wikimedia Commons (PD)

Pressemitteilung, 07.08.2023, WWF

Organisierte Kriminalität ist ein Treiber des Artensterbens

Der Wissenschaftsausschuss der Internationalen Walfang-Kommission (IWC) hat heute zum ersten Mal eine Warnung über das unmittelbar bevorstehende Aussterben einer Art veröffentlicht. Der Vaquita, der kleinste Wal der Welt, droht mit nur 10 verbleibenden Individuen bald von der Erde zu verschwinden. Seit Jahren sterben die Tiere als Beifang in der illegalen Totoaba-Fischerei im Golf von Kalifornien, Mexiko. Der WWF fordert ein strengeres Vorgehen gegen die organisierte Kriminalität, illegale Fischerei und den illegalen internationalen Handel mit Totoaba-Schwimmblasen.

„Vaquitas sind die am stärksten bedrohten Meeressäuger der Welt. Sie können nicht gefangen, gehalten oder nachgezüchtet werden. Ihr Verschwinden ist ein tragisches Beispiel dafür, wie die organisierte Umweltkriminalität das Artensterben befeuert“, erklärt Heike Zidowitz, Meeresartenschutz-Expertin beim WWF Deutschland.

Der Grund für das drohende Aussterben des Vaquitas ist die Fischerei auf den Totoaba, ein zwei Meter langer, barschartiger Fisch. Er kommt ebenfalls nur im Golf von Kalifornien vor und ist gefährdet, Fang und Handel sind verboten. Doch die Schwimmblasen sind ein begehrtes Mittel in der Traditionellen Chinesischen Medizin und eine teure Delikatesse. Am Schwarzmarkt erzielen sie höhere Preise als Gold und Kokain. Daher werden Totoabas noch immer illegal gefangen. Die Vaquitas können die dafür aufgestellten Kiemennetze nicht orten und verenden darin. Zum Schutz der kleinen Wale hat die mexikanische Regierung eine sogenannte „Null-Toleranz-Zone“ eingerichtet, in denen das Befahren und Fischen verboten ist. Doch trotz Verbesserungen werden auch hier immer wieder Verstöße gemeldet.

„Umweltkriminalität steht auf Platz drei der lukrativsten illegalen Geschäfte weltweit. Um die letzten Vaquitas zu retten, muss die mexikanische Regierung noch härter gegen die illegale Fischerei und die organisierte Kriminalität vorgehen. International muss der Schmuggel mit den Schwimmblasen gestoppt werden. Dafür kommt es vor allem darauf an, den Absatzmarkt in China auszutrocknen und die Schmuggelrouten zu schließen. Mexiko darf nicht zulassen, dass der Vaquita vor unseren Augen ausstirbt“, so Heike Zidowitz.

Der WWF begrüßt daher den Vorstoß des Wissenschaftsausschusses der IWC. Er sendet mit der Aussterbe-Warnung ein schrilles Signal der drohenden Ausrottung ins allgemeine Bewusstsein. Das Gremium reiht sich damit gemeinsam mit dem Washingtoner Artenschutzübereinkommen (CITES) in die internationalen Foren ein, die den Druck auf die mexikanische Regierung für eine strikte Umsetzung vorhandener Maßnahmen erhöhen.

Vom Ende der illegalen Fischerei und der organisierten Kriminalität würde der gesamte Lebensraum profitieren. Mexiko ist eines der artenreichsten Länder der Welt. Das Ökosystem im Golf von Kalifornien ist einzigartig und beheimatet viele Arten, die nur dort vorkommen. Neben der illegalen Fischerei belasten Pestizideinträge und der abnehmende Zufluss von Frischwasser den Golf.

Diese Pressemitteilung findet ihr beim WWF.

Auch der Ostsee-Schweinswal ist genau wie der Vaquita stark gefährdet und verendet immer wieder als Beifang in Fischereinetzen.

ArcWatch 1: Augenzeugen des Arktischen Wandels

Wie auch für die ArcWatch 1 ist hier die Polarstern in der Arktis unterwegs

© Alfred-Wegener-Institut / Mario Hoppmann (CC-BY 4.0)

Pressemitteilung, 01.08.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

AWI-Direktorin Antje Boetius leitet Polarstern-Expedition in die Zentralarktis

[01. August 2023] Am Donnerstag, den 3. August 2023 soll das Forschungsschiff Polarstern vom norwegischen Tromsø aus in Richtung Nordpol starten. Zwei Monate lang werden gut fünfzig wissenschaftliche Expeditionsteilnehmende die Arktis im Wandel erforschen, während die Meereisausdehnung im September ihr jährliches Minimum erreichen wird. Sie erkunden die Biologie, Chemie und Physik des Meereises sowie die Auswirkungen des Meereis-Rückgangs auf das gesamte Ozeansystem von der Oberfläche bis in die Tiefsee. Vor elf Jahren war Antje Boetius beim bisher größten Meereisminumum der Arktis und seinen Folgen für das Leben in der Tiefsee dabei. Jetzt kehrt sie mit ihrem Team zurück, um den heutigen Zustand der Arktis zu vergleichen – auch mit den Daten der MOSAiC-Expedition 2019/20.

„Ich bin sehr gespannt darauf zu sehen, wie sich das Meereis und das Leben im Ozean in der letzten Dekade verändert haben“, sagt Antje Boetius. „Im Jahr 2012 waren wir während der bisher geringsten dokumentierten sommerlichen Meereisausdehnung vor Ort und konnten erhebliche Auswirkungen auf das gesamte Ökosystem des zentralen Arktischen Ozeans feststellen, bis in über vier Kilometer Wassertiefe“, erläutert die Direktorin des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI). „Aktuell beobachte ich die Meereissituation auf www.meereisportal.de besonders intensiv. Noch wissen wir nicht, ob ein neues Minimum erreicht wird, angesichts des global heißen Jahres 2023 und während in der Antarktis das Meereis ein Rekordtief zeigt.

Der Leiter des Team Meereisphysik und MOSAiC-Experte Dr. Marcel Nicolaus berichtet: „Das Eis erstreckt sich zurzeit mit knapp 7,5 Millionen Quadratkilometern über eine ähnliche Fläche wie in den beiden vergangenen Jahren. Damit gibt es noch etwa eine Million Quadratkilometer mehr Eis als im Jahr 2012. Die sommerliche Schmelze ist aber in vollem Gange, und vor allem der Wind wird in den kommenden Wochen bestimmen, wie sich das poröse, brüchige Eis weiter verteilt.“

Wie sich die Beschaffenheit des Meereises verändert, untersucht das Expeditionsteam vor Ort detailliert: Mit Helikopter-geschleppten Sensoren wird die Dicke des Eises vermessen, Eisbohrkerne erlauben die Analyse der Meereisbeschaffenheit sowie die Untersuchung im Eis lebender Algen. Ein Unterwasserroboter misst, wie viel Licht durch das Eis in den Ozean gelangt, wenn seine Oberfläche noch von Schnee oder bereits von Schmelzwassertümpeln bedeckt ist. Das Licht steht Kleinstalgen (Phytoplankton) als Energiequelle für die Photosynthese zur Verfügung, die in den oberen Wasserschichten leben. Was mit dem von ihnen gebundenen Kohlenstoff weiter passiert, wird (mikro-)biologisch, chemisch und physikalisch von der Wasseroberfläche bis in den Tiefseeboden erforscht. Die Planktologen an Bord wollen den Weg des Lebens direkt unter dem Eis bis in die Tiefsee verfolgen, dazu bringen sie verschiedene Kamerasysteme aus sowie autonome Probennehmer.

Für diese Arbeiten sind mehrere sogenannte Eisstationen geplant: „Das Schiff legt an eine Scholle an, dann gehen die Eisforscher auf die Scholle, wir setzen verschiedene Roboter und Freifallgeräte aus und parallel schauen wir mit den Zoologinnen die Lebewesen am Grund an, über 4000 Meter tiefer. So erkennen wir Zusammenhänge in allen Stockwerken des Ozeans vom Meereis bis zum Meeresboden“, erklärt Antje Boetius. Dabei kehrt das Team für vergleichende Untersuchungen in den gleichen Arbeitsgebieten wie im Jahr 2012 zurück: in die besonders produktive Eisrandzone und Regionen mit vielleicht noch immer mehrjähriger Eisbedeckung in der zentralen Arktis. Für die Arbeiten werden eine Reihe bewährter, aber auch neuer Technologien eingesetzt, beispielsweise Landersysteme, Tiefsee-Crawler und das am AWI entwickelte Ocean Floor Observation and Bathymetry System (OFOBS). Die Rückkehr erfolgt nach der sommerlichen Eisschmelze, wenn die herbstliche Meereisbildung beginnt.

Unter den Teilnehmenden ist auch ein Kamerateam der UFA Documentary GmbH, das die Expedition filmisch begleitet. Geplant ist die Ausstrahlung der in Kooperation mit dem NDR entstehenden Fernseh-Dokumentation für den Jahreswechsel in der ARD. Bereits während der Expedition können Interessierte im Hörfunkprogramm von Radio Bremen Eindrücke von Bord gewinnen und die Expedition natürlich auch in der Polarstern-App und auf den Social-Media-Kanälen des Alfred-Wegener-Instituts verfolgen. Planmäßig soll die Polarstern am 1. Oktober in ihren Heimathafen Bremerhaven zurückkehren.

Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Am 03. August 2023 sind die Wissenschaftler:innen mit der Polarstern aufgebrochen. In dem digitalen Logbuch zur Expedition ArcWatch 1 könnt ihr die aktuelle Route mitverfolgen und bekommt jeden Tag spannende Einblicke in die wissenschaftlichen Arbeiten an und unter Deck – sowie auf und unter dem Eis.

Über die MOSAiC Expedition 2019/2020 – die größte Arktis-Mission aller Zeiten – könnt ihr hier einen Podcast anhören. Im Interview mit DEEPWAVE spricht Antje Boetius, Direktorin des AWI, über ihre Tauchfahrt in die Tiefsee und warum der Schutz der Meere uns alle etwas angeht.

Tiefseegraben: Müllhalde am Meeresgrund

(Makro-)Plastikmüll der in der Tiefsee gefunden wurde

© Serena Abel / Senckenberg Gesellschaft für Naturforschung

Pressemitteilung, 13.07.2023, Senckenberg Gesellschaft für Naturforschung

Plastikmüll in einer Tiefe von 9600 Metern gefunden

Ein Team von Forscher*innen des Senckenberg Forschungsinstituts und Naturmuseums Frankfurt, der Universität Basel und des Alfred-Wegener-Instituts, Helmholtz-Zentrums für Polar- und Meeresforschung, haben die aktuell umfangreichste Untersuchung von (Makro-)Plastikmüll in einer Tiefe von bis zu 9600 Metern vollendet. In ihrer im Fachjournal „Environmental Pollution“ erschienenen Studie analysierten die Forschenden die Anzahl, das Material und die Art der Plastikabfälle im pazifischen Kurilen-Kamtschatka-Tiefseegraben. Sie zeigen, dass die meisten Plastiküberreste aus dem regionalen Seeverkehr und der Fischerei stammen. Das Team warnt, dass Tiefseegräben zu „Müllhalden der Meere“ werden könnten.

Spätestens seitdem im Scheinwerferlicht eines Tauchbootes 2018 eine Einkaufstüte in 11.000 Metern Tiefe des Mariengrabens auftauchte, ist das Vorhandensein von Plastikmüll in der Tiefsee unbestreitbar. „Auch wenn es mittlerweile ein zunehmendes Bewusstsein für das Plastik-Problem gibt, ist die weltweit produzierte Kunststoffmenge in den letzten 70 Jahren sehr stark gestiegen – allein im Jahr 2021 wurden 391 Millionen Tonnen hergestellt“, erzählt Dr. Serena Abel, aktuell Postdoktorandin an der Universität Basel und spricht weiter: „Die Vernetzung der Ozeane durch Meeresströmungen in Verbindung mit der Transportfähigkeit von schwimmfähigem Kunststoff macht die Plastikverschmutzung zu einem globalen Problem. Vor allem in abyssalen und hadalen Tiefen, wo die Hauptabbaufaktoren wie Photodegradation, das heißt die Veränderung unter dem Einfluss von Sonnenlicht, und Welleneinwirkung fehlen, sammelt sich Plastik an und bleibt lange – bis zu mehreren Hundert Jahren – bestehen. Jüngste Aufzeichnungen von Tiefseegräben zeigen die Allgegenwärtigkeit des menschlichen Fußabdrucks auch an Orten, die für uns Menschen unzugänglich sind.“

Die wissenschaftliche Mitarbeiterin hat in ihrer neuen Studie gemeinsam mit der Senckenberg-Meeresforscherin Prof. Dr. Angelika Brandt und Kolleg*innen des Alfred-Wegener-Instituts, Helmholtz-Zentrums für Polar- und Meeresforschung, das Vorhandensein von Plastikmüll im Kurilen-Kamtschatka-Graben, einer 2250 Kilometer langen Tiefseerinne im nordwestlichen Teil des Pazifischen Ozeans, untersucht. Mithilfe von Schleppnetzen und einem Epibenthosschlitten beprobten die Wissenschaftler*innen 13 Stationen in Tiefen zwischen

Metern. „Dies ist nach unserem Wissen der tiefste Einsatz von Schleppnetzen zur Erforschung der Plastikverschmutzung, der jemals stattgefunden hat“, erläutert Brandt und fährt fort: „Unsere Ergebnisse sind alarmierend: In allen Proben haben wir (Makro-)Plastikmüll gefunden – mit einer Gesamtzahl von 111 Gegenständen.“

Industrieverpackungen und Material, das der Fischerei zugeordnet werden kann, waren die häufigsten Müllkomponenten im Kurilen-Kamtschatka-Graben, die höchstwahrscheinlich aus dem Ferntransport durch den Kuroshio-Ausdehnungsstrom oder aus dem regionalen Seeverkehr und der Fischerei stammen. Mit 33 Prozent waren Schnüre und Kordeln die häufigsten Hinterlassenschaften, gefolgt von Kunststofffragmenten (23 %) und Industrieverpackungen (11 %). Auf sechs Kunststoffabfällen waren eindeutige Etiketten in japanischer, koreanischer und spanischer Sprache zu erkennen.

„Durch die Kategorisierung der anthropogenen Abfälle nach ihrem Verwendungszweck war es möglich, die beiden Hauptquellen von Kunststoffen, die sich am Grabenboden absetzen – Verpackungen und Fischerei – zu unterscheiden. Durch unsere spektroskopischen Analysen konnten wir zudem die wichtigsten Polymertypen, nämlich Polyethylen, Polypropylen und Nylon, identifizieren. Diese Polymere sind in der Meeresumwelt recht stabil, da sie nicht hydrolytisch abgebaut werden und höchstwahrscheinlich auf dem Grund des Grabens landen, ohne in kleinere Teile zu zerfallen“, ergänzt Abel.

Die abgelegene Position des Kurilen-Kamtschatka-Grabens und die hohen Sedimentationsraten machen ihn zu einem potenziellen Standort für eine umfangreiche Kunststoffverschmutzung, was ihn zu einem der am stärksten kontaminierten Meeresgebiete der Welt und zu einer ozeanischen Kunststoffablagerungszone machen könnte, heißt es in der Studie. „Unsere Ergebnisse unterstreichen die Dringlichkeit neuer politischer Maßnahmen für die Abfallbehandlung und die Kunststoffproduktion! Der Meeresboden darf keine Halde für Plastikmüll werden!“, fordert Brandt.

Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.

Die Originalpublikation „Journey to the deep: plastic pollution in the hadal of deep-sea trenches“ findet ihr bei Environmental Pollution.

Neben (Makro-)Plastikmüll wurde auch schon eine hohe Belastung von Mikroplastik im Meeresboden in der Tiefsee festgestellt.

Eine Assel namens Brandt

Die neu entdeckte Assel Austroniscus brandtae

© Terue Kihara / Senckenberg Gesellschaft für Naturforschung

Pressemitteilung, 6.7.2023, Senckenberg Gesellschaft für Naturforschung

Senckenberg-Meeresforscherin wird Namenspatin für Tiefsee-Art

Senckenberg-Forschende haben mit Kolleg*innen aus den USA und Deutschland eine neue Tiefsee-Assel im Fachjournal „Zootaxa“ beschrieben. Das Tier wurde 2015 im Rahmen der Jungfernfahrt des Forschungsschiffes SONNE gesammelt und stammt aus dem Puerto-Rico-Tiefseegraben im nordwestlichen Atlantik. Anders als erwartet besiedelt die neu entdeckte Asselart einen enormen Tiefenbereich zwischen 4.552 und 8.338 Metern – die größte je nachgewiesene Tiefenverbreitung einer Assel. Benannt wurde die neue Art – Austroniscus brandtae – nach der Senckenberg-Meeresforscherin Prof. Dr. Angelika Brandt in Anerkennung ihrer außergewöhnlichen Forschungsleistungen und ihres Engagements zum Schutz der Tiefsee.

Entlang der Plattengrenzen, wo sich ozeanische unter Kontinentalplatten schieben, bildet sich die tiefste Umgebung der Erde: die Hadalzone mit Tiefen von über sechs bis fast elf Kilometern. „Die Gemeinschaften in diesen Zonen der Meere sind – aufgrund der großen logistischen und technischen Beschränkungen bei der Probenahme – die wohl am wenigsten bekannte Fauna der Erde“, erklärt Dr. Stefanie Kaiser vom Senckenberg Forschungsinstitut und Naturmuseum Frankfurt und fährt fort: „Wir konnten nun eine neue Meeresassel-Art aus den hadalen und abyssalen Tiefen des Puerto-Rico-Grabens im Atlantik beschreiben: Austroniscus brandtae.“

Das 2,7 Zentimeter große Krebstier wurde von dem Forschungsteam zu Ehren von Senckenbergerin Prof. Dr. Angelika Brandt benannt. Brandt leitet seit 2017 die Abteilung Marine Zoologie am Senckenberg-Standort Frankfurt und lehrt an der Goethe-Universität Frankfurt. Ihr Forschungsinteresse gilt den Verbreitungsmustern und treibenden Faktoren für die Evolution von mariner Makrofauna. Dabei forscht sie mit ihrer Arbeitsgruppe hauptsächlich an Krebsen – insbesondere an Meeresasseln (Isopoden). Brandt und ihr Team analysieren die stammesgeschichtliche Herkunft und Besiedlungsgeschichte von Isopoden in der Tiefsee und versuchen zu verstehen welche treibenden Faktoren es in der Tiefsee für hohe Diversität gibt. „Unsere Artbenennung soll Angelika Brandts Engagement und ihre Leistungen in der Tiefsee-Isopodenforschung ehren. Es gibt zudem auch einen ganz persönlichen Grund für die Namenswahl: Angelika Brandt war Doktormutter dreier Autor*innen der Studie und damit entscheidend für unseren Weg in die Tiefseeforschung“, fügt Kaiser hinzu.

Aufgrund der großen Tiefenunterschiede zwischen den Probenahmeorten im Puerto-Rico-Graben – zwischen 4.552 und 8.338 Metern – erwartete das Forschungsteam, dass sie unterschiedliche Arten innerhalb der Gattung finden würden, welche die abyssalen und hadalen Standorte bewohnen. „Mittels morphologischer Untersuchung mit traditioneller Mikroskopie und einer anschließenden molekularen Analyse konnten wir aber zeigen, dass tatsächlich nur die von uns neu beschriebenen Art, Austroniscus brandtae, den Meeresboden des Puerto-Rico-Grabens besiedelt“, erläutert Kaiser. Die neu entdeckte Meeresassel ist die erste Art der Gattung Austroniscus aus dem Atlantik und der weltweit tiefste Nachweis der Gattung.
Austroniscus brandtae scheint sich in den Tiefen des Puerto-Rico-Grabens sehr gut zu behaupten – dies deutet darauf hin, dass die Vielfalt in den Tiefseegräben abnimmt und nur wenige Arten den dortigen extremen Bedingungen gewachsen sind“, schließt Kaiser.

Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.

Die Originalpublikation „Combining morphological and mitochondrial DNA data to describe a new species of Austroniscus Vanhöffen, 1914 (Isopoda, Janiroidea, Nannoniscidae) linking abyssal and hadal depths of the Puerto Rico Trench“ findet ihr bei Zootaxa.

Wenn ein Go für den Tiefseebergbau beschlossen wird, werden viele Lebensgemeinschaften in der Tiefsee zerstört und bisher unbekannte Arten, wie diese Tiefsee-Assel, vielleicht nie entdeckt.

//