In der Umgebung von Hydrothermalquellen leben viele Bakterien

© NOAA Okeanos Explorer Program, Galapagos Rift Expedition 2011 / Wikimedia Commons (CC BY 2.0)

Pressemitteilung, 09.03.2023, MARUM

Die ark­ti­sche Tief­see liegt fern­ab der le­bens­spen­den­den En­er­gie der Son­ne, und nur win­zi­ge Men­gen an or­ga­ni­schem Ma­te­ri­al, wel­ches Le­ben speist, kom­men dort an. Ei­ni­ge Bak­te­ri­en nut­zen statt­des­sen die En­er­gie, die von un­ter­see­ischen Vul­ka­nen frei­ge­setzt wird. Auf Ex­pe­di­tio­nen mit dem For­schungs­schiff Po­lar­stern ha­ben For­schen­de aus Deutsch­land nun Bakterien ent­deckt, die auf ein­zig­ar­ti­ge Wei­se an die­se Geo­en­er­gie an­ge­passt sind. Sie be­schrei­ben die Rol­le die­ser Bak­te­ri­en für die bio­geo­che­mi­schen Kreis­läu­fe im Meer.

Tief im Oze­an, an den Gren­zen tek­to­ni­scher Plat­ten, bil­den Un­ter­was­ser­vul­ka­ne so­ge­nann­te hydro­ther­ma­le Quel­len. An die­sen Quel­len tritt hei­ße, sau­er­stoff­freie Flüs­sig­keit aus, die gro­ße Men­gen an Me­tal­len wie Ei­sen, Man­gan oder Kup­fer ent­hält. Wenn sich das hei­ße Was­ser mit dem um­ge­ben­den kal­ten und sau­er­stoff­hal­ti­gen See­was­ser mischt, ent­ste­hen hydro­ther­ma­le Schwa­den mit rauch­ähn­li­chen Par­ti­keln aus Me­tall­sul­fid. Die­se Schwa­den stei­gen Hun­der­te von Me­tern über dem Mee­res­bo­den auf und ver­tei­len sich Tau­sen­de von Ki­lo­me­tern. Hydro­ther­ma­le Schwa­den schei­nen ein ris­kan­ter Ort zu sein, um dort hei­misch zu wer­den. Das hin­dert be­stimm­te Bakterien aber nicht dar­an, ge­nau dort zu wach­sen und zu ge­dei­hen, wie eine jetzt in Nature Microbiology ver­öf­fent­lich­te Stu­die zeigt.

Mehr als nur vorübergehende Besucher?

„Wir ha­ben die Bakterien der Gat­tung Sulfurimonas ge­nau un­ter die Lupe ge­nom­men,” sagt Er­st­au­tor Mas­si­mi­lia­no Mo­la­ri vom Max-Planck-In­sti­tut für Ma­ri­ne Mi­kro­bio­lo­gie in Bre­men. Von die­sen Bakterien war bis­her nur be­kannt, dass sie in sau­er­stoff­ar­men Le­bens­räu­men wach­sen. Gen­se­quen­zen von ih­nen wur­den ver­ein­zelt aber auch in hydro­ther­ma­len Schwa­den nach­ge­wie­sen. „Man ging da­von aus, dass sie aus den Le­bens­räu­men rund um die hei­ßen Quel­len am Mee­res­bo­den dort­hin ge­spült wur­den. Wir frag­ten uns aber, ob nicht die Schwa­den selbst ein ge­eig­ne­ter Wohn­ort für man­che Mit­glie­der der Sulfurimonas-Grup­pe sein könn­ten.“

Harte Bedingungen für die Probenahme

Ge­mein­sam mit Kol­le­gen des Al­fred-We­ge­ner-In­sti­tuts, Helm­holtz-Zen­trum für Po­lar- und Mee­res­for­schung (AWI) in Bre­mer­ha­ven und des MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten der Uni­ver­si­tät Bre­men mach­te sich Mo­la­ri da­her auf eine schwie­ri­ge For­schungs­rei­se zu hydro­ther­ma­len Quel­len in der zen­tra­len Ark­tis und im Süd­at­lan­tik, um ihre Hy­po­the­se zu über­prü­fen. „Wir sam­mel­ten un­se­re Pro­ben in ex­trem ab­ge­le­ge­nen Re­gio­nen von be­son­ders lang­sa­men Sprei­zungs­rü­cken, die noch nie un­ter­sucht wor­den wa­ren. Es ist sehr kom­pli­ziert, Pro­ben aus hydro­ther­ma­len Ab­la­ge­run­gen zu ge­win­nen, da sie schwer zu lo­ka­li­sie­ren sind. Noch schwie­ri­ger wird es, wenn sich die Schwa­den in Tie­fen von mehr als 2500 Me­tern und un­ter dem ark­ti­schen Meer­eis oder in den stür­mi­schen Zo­nen des Süd­po­lar­mee­res be­fin­den,“ er­klärt Ant­je Boe­ti­us, Grup­pen­lei­te­rin am Max-Planck-In­sti­tut für Ma­ri­ne Mi­kro­bio­lo­gie und Di­rek­to­rin des AWI, die die Ark­tis-Mis­sio­nen lei­te­te. An Bord des For­schungs­schiffs Po­lar­stern ge­lang es den For­schen­den den­noch, Pro­ben zu sam­meln und an­hand die­ser die Zu­sam­men­set­zung und den Stoff­wech­sel der Bakterien zu un­ter­su­chen.

Gut ausgerüstet und weit verbreitet

Mo­la­ri and sei­ne Kol­le­gin­nen und Kol­le­gen iden­ti­fi­zier­ten eine neue Sulfurimonas-Art na­mens USulfurimonas pluma (das hoch­ge­stell­te „U“ steht für un­kul­ti­viert, also nicht im La­bor kul­ti­viert), die in den kal­ten, sau­er­stoff­ge­sät­tig­ten Hydro­ther­mal­fah­nen lebt. Die­ses Bak­te­ri­um nutzt Was­ser­stoff aus der Schwa­de als En­er­gie­quel­le. Die For­schen­den un­ter­such­ten auch das Ge­nom der Mi­kro­or­ga­nis­men und stell­ten fest, dass es stark re­du­ziert ist. Es feh­len Gene, die für an­de­re Ar­ten ty­pisch sind. Mit an­de­ren Ge­nen sind sie aber gut aus­ge­stat­tet, um in die­ser dy­na­mi­schen Um­ge­bung wach­sen zu kön­nen.

„Wir ver­mu­ten, dass die Hydro­ther­mal­schwa­de nicht nur Mi­kro­or­ga­nis­men aus hydro­ther­ma­len Schlo­ten ver­brei­tet, son­dern auch eine öko­lo­gi­sche Ver­bin­dung zwi­schen dem of­fe­nen Oze­an und den Le­bens­räu­men auf dem Mee­res­bo­den her­stel­len kann. Un­se­re phy­lo­ge­ne­ti­sche Ana­ly­se deu­tet dar­auf hin, dass USulfurimonas pluma von ei­nem Vor­fah­ren ab­stam­men könn­te, der mit hydro­ther­ma­len Schlo­ten as­so­zi­iert war, aber eine hö­he­re Sau­er­stoff­to­le­ranz ent­wi­ckel­te und sich dann über die Ozea­ne ver­brei­te­te. Dies muss je­doch noch wei­ter un­ter­sucht wer­den,“ so Mo­la­ri.

Ein Blick auf die Ge­nom­da­ten aus an­de­ren Schwa­den zeig­te, dass USulfurimonas pluma in sol­chen Le­bens­räu­men über­all auf der Welt wächst. „Of­fen­sicht­lich ha­ben sie eine öko­lo­gi­sche Ni­sche in kal­ten, sau­er­stoff­ge­sät­tig­ten und was­ser­stoff­rei­chen Hydro­ther­mal­schwa­den ge­fun­den“, sagt Mo­la­ri. „Wir müs­sen wohl un­se­re Vor­stel­lun­gen über die öko­lo­gi­sche Rol­le von Sulfurimonas in der Tief­see über­den­ken. Sie könn­te viel wich­ti­ger sein, als wir bis­her dach­ten.“

Diese Pressemitteilung findet ihr beim MARUM.

Die Originalpublikation „A hy­dro­ge­notro­phic Sulfurimonas is glo­bal­ly ab­un­dant in deep-sea oxy­gen-sa­tu­ra­ted hydro­ther­mal plu­mes“ findet ihr bei Nature Microbiology.

Bei einer Expedition im Jahr 2022 zwischen Grönland und Spitzbergen wurde in 3.000 Meter Wassertiefe ein neues Hydrothermalfeld entdeckt.

//