Klima

Meeresschutz ist Klimaschutz.

Gi­gan­ti­sches sub­ma­ri­nes Kaltwasserkorallen-Gebirge

Verschiedene Kaltwasserkorallen in orange, rot und in Brauntönen wachsen am Meeresgrund

© Wolf Wichmann

Pressemitteilung, 04.03.2018, MARUM

Internationales Forscherteam untersucht Korallenriffe vor Mauretanien

Auf einer Länge von etwa 400 Kilometern erstreckt sich am Meeresboden vor der Küste Mauretaniens die weltweit größte zusammenhängende Kaltwasserkorallenstruktur. Dr. Claudia Wienberg vom MARUM – Zentrum für Marine Umweltwissenschaften an der Universität Bremen und ihre Kolleginnen und Kollegen haben untersucht, wie sich die Kaltwasserkorallen vor Mauretanien in den vergangenen 120.000 Jahren entwickelten. Ihre Ergebnisse haben sie in der Zeitschrift Quaternary Science Reviews veröffentlicht.

An­ders als tro­pi­sche Ko­ral­len, die in fla­chen, licht­durch­flu­te­ten Ge­wäs­sern le­ben, fin­det man Kalt­was­ser­ko­ral­len in Was­ser­tie­fen von meh­re­ren hun­dert bis tau­send Me­tern. Mehr als die Hälf­te der be­kann­ten, heu­te le­ben­den Ko­ral­len­ar­ten exis­tie­ren in völ­li­ger Dun­kel­heit in der Tief­see. Auch sie sind ge­schäf­ti­ge In­ge­nieu­re, die be­ein­dru­cken­de Ko­ral­len­rif­fe auf­bau­en. Maß­geb­lich an der Riff­bil­dung be­tei­ligt ist die Kalt­was­ser­ko­ral­len­art Lophelia pertusa. Sie ge­hört zu den Stein­ko­ral­len und bil­det stark ver­zweig­te, bus­ch­ar­ti­ge Ko­lo­ni­en. Wo vie­le sol­cher Ko­lo­ni­en ne­ben­ein­an­der exis­tie­ren, bil­den sich rif­far­ti­ge Struk­tu­ren, die neu­en Le­bens­raum bie­ten für ver­schie­de­ne an­de­re Tier­ar­ten wie Weich­ko­ral­len, Fi­sche, Kreb­se und Schwäm­me. Eine Kalt­was­ser­ko­ral­le sitzt ihr Le­ben lang fest ver­bun­den auf dem Sub­strat, auf dem die Lar­ve einst sie­del­te. Kalt­was­ser­ko­ral­len wach­sen be­vor­zugt auf ih­res­glei­chen und las­sen so über Zeit­räu­me von Jahr­tau­sen­den bis Jahr­mil­lio­nen rie­si­ge Struk­tu­ren am Mee­res­bo­den ent­ste­hen.

Alpen vor Mauretanien

Die welt­weit größ­te zu­sam­men­hän­gen­de Kalt­was­ser­ko­ral­len­struk­tur mit ei­ner Län­ge von etwa 400 Ki­lo­me­tern exis­tiert ent­lang der Mau­re­ta­ni­schen Küs­te. Hier er­rei­chen die Ko­ral­len­hü­gel Hö­hen von 100 Me­tern. „Die Grö­ße der Hü­gel und die Län­ge die­ser Struk­tu­ren ist wirk­lich spe­zi­ell. Im Grun­de ge­nom­men könn­te man hier tat­säch­lich von ei­nem Kalt­was­ser­ko­ral­len-Ge­bir­ge un­ter Was­ser spre­chen“, sagt Dr. Clau­dia Wien­berg vom MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten an der Uni­ver­si­tät Bre­men. „Vor Mau­re­ta­ni­en sind die ein­zel­nen Kaltwas­ser­ko­ral­len-Hü­gel ver­mut­lich über die Zeit zu­sam­men­ge­wach­sen. So et­was gibt es nir­gend­wo sonst in den Welt­mee­ren.“ Wien­berg war Teil ei­nes in­ter­na­tio­na­len Teams von Wis­sen­schaft­le­rin­nen und Wis­sen­schaft­lern, das an Bord des For­schungs­schiffs MA­RIA S. ME­RI­AN die­ses Ge­biet in­ten­siv be­prob­te, um mehr über die Ent­wick­lung der Kalt­was­ser­ko­ral­len zu er­fah­ren. In ei­ner Stu­die, die im Wis­sen­schafts­jour­nal Quaternary Science Reviews ver­öf­fent­licht wur­de, stel­len sie und ihre Kol­le­gin­nen und Kol­le­gen nun die Er­geb­nis­se vor.

Sauerstoffmangel versetzte Korallen in Ruhezustand

Prof. Dr. Nor­bert Frank und sein Team von der Uni­ver­si­tät Hei­del­berg ana­ly­sier­ten Ko­ral­len­frag­men­te von der Ober­flä­che und aus ver­schie­de­nen Tie­fen des Mee­res­bo­dens und be­stimm­ten de­ren Al­ter. Mit die­sen und wei­teren Un­ter­su­chun­gen konn­ten die Wis­sen­schaft­le­rin­nen und Wis­sen­schaft­ler nach­zeich­nen, wie sich die Kaltwasser­ko­ral­len vor Mau­re­ta­ni­en in den ver­gan­ge­nen 120.000 Jah­ren ent­wi­ckel­ten. So gab es in der Ver­gan­gen­heit im­mer wie­der Pha­sen, in de­nen die Wachs­tums­ra­ten Spit­zen­wer­te von 16 Me­tern pro 1000 Jah­re er­reich­ten. So schnell wächst nicht ein­mal das der­zeit größ­te Kalt­was­ser­ko­ral­len-Riff vor Nor­we­gen. Vor fast 11.000 Jah­ren sta­gnier­te das Wachs­tum der Mau­re­ta­ni­schen Ko­ral­len­hü­gel. Zu die­ser Zeit sind die Ko­ral­len wahr­schein­lich gänz­lich von den Hü­geln ver­schwun­den. Erst heu­te tau­chen dort wie­der ver­ein­zelt le­ben­de Kaltwas­ser­ko­ral­len auf. Das Wachs­tum der Ko­ral­len hängt von ver­schie­de­nen Um­welt­be­din­gun­gen ab, wie Was­ser­tem­pe­ra­tur, Sau­er­stoff­ge­halt, dem Nah­rungs­an­ge­bot und den vor­herr­schen­den Strö­mun­gen, die Nah­rung zu den un­be­weg­li­chen Kalt­was­ser­ko­ral­len trans­por­tie­ren. Von al­len Ein­flüs­sen mach­ten die For­schen­den den nied­ri­gen Sau­er­stoff­ge­halt von etwa 1 Mil­li­li­ter Sau­er­stoff pro Li­ter Was­ser als kri­ti­schen Fak­tor aus. „Das ist ex­trem we­nig. Ur­sprüng­lich wur­de an­ge­nom­men, dass bei 2,7 Mil­li­li­ter pro Li­ter die un­ters­te Gren­ze für Kaltwasserkorallen liegt, bei der sie zwar über­le­ben, aber kei­ne Rif­fe mehr bau­en kön­nen“, so Wien­berg. „Die ver­ein­zel­ten Kaltwasserkorallen auf den Hü­geln zei­gen zwar, dass sie zu­min­dest zeit­wei­se sehr ge­rin­ge Sau­er­stoff­ge­hal­te über­le­ben kön­nen, aber gut geht es ih­nen nicht.“

Die Er­geb­nis­se zei­gen, dass die Hoch­pha­sen der Kalt­was­ser­ko­ral­len, in de­nen die Hü­gel in die Höhe wuch­sen, mit Zei­ten zu­sam­men­fal­len, in de­nen mit Sau­er­stoff an­ge­rei­cher­te Was­ser­mas­sen aus dem Nor­den in das Ge­biet ström­ten. Wa­ren die Kalt­was­ser­ko­ral­len in der Ver­gan­gen­heit wie auch heu­te von sau­er­stoff­ar­men Was­ser­mas­sen aus dem Sü­den um­strömt, so wuch­sen die Hü­gel nicht oder nur sehr lang­sam. Je nach vor­herr­schen­dem Kli­ma ver­schob sich die Front zwi­schen die­sen Was­ser­mas­sen von Nord nach Süd und um­ge­kehrt, und die Ko­ral­len wur­den von sau­er­stoff­rei­chem, dann wie­der von sau­er­stoff­ar­mem Was­ser um­strömt.

Wien­bergs Theo­rie zu­fol­ge fan­den die Kaltwasserkorallen bei ex­trem nied­ri­gen Sau­er­stoff­ge­hal­ten in klei­ne­ren Schluch­ten zwi­schen den gro­ßen Hü­gel­struk­tu­ren Zu­flucht. In die­sen Can­yons fin­den sich heut­zu­ta­ge auch weit mehr Kalt­was­ser­ko­ral­len als auf den Hü­geln. Die schwim­men­den Ko­ral­len­lar­ven sind über eine ge­wis­se Stre­cke mo­bil, be­vor sie sich end­gül­tig nie­der­las­sen. So könn­ten Mi­gra­ti­ons­be­we­gun­gen von den Hü­geln in die Can­yons und – un­ter dem Ein­fluss der nörd­li­chen Was­ser­mas­sen – wie­der zu­rück statt­ge­fun­den ha­ben.

„Laut wis­sen­schaft­li­cher Pro­gno­sen wer­den sich die Zo­nen mit ge­rin­gem Sau­er­stoff­ge­halt in den Welt­mee­ren wei­ter aus­deh­nen“, so Wien­berg. „Auch wenn Kaltwasserkorallen eine hohe To­le­ranz zei­gen, so ist dies doch ein ent­schei­den­der Stress­fak­tor für die­se Öko­sys­te­me der Tief­see. Hin­zu kom­men die durch den Kli­ma­wan­del er­höh­ten Was­ser­tem­pe­ra­tu­ren so­wie die zu­neh­men­de Oze­an­ver­saue­rung.“

Diese Pressemittelung findet ihr beim MARUM.

Weitere Informationen zu Korallenriffen und die Auswirkungen der Klimakrise auf das Great Barrier Reef, findet ihr in unserem Forschungs- und Klimablog.

Ozeanversauerung – die Grenzen der Anpassung

Emiliania huxleyi-Zellen in einer elektronenmikroskopischen Aufnahme

© Kai Lohbeck / GEOMAR

Pressemitteilung, 11.07.2016, GEOMAR

Weltweit längstes Labor-Experiment mit der Kalkalge Emiliania huxleyi zeigt, dass evolutionäre Anpassung an Versauerung nur eingeschränkt möglich ist 

Die wichtigste einzellige Kalkalge der Weltmeere, Emiliania huxleyi, ist grundsätzlich in der Lage, sich durch Evolution an Ozeanversauerung anzupassen. Das bisher längste Evolutionsexperiment mit diesem Organismus zeigt jedoch, dass das Anpassungspotenzial nicht so groß ist, wie ursprünglich angenommen. So konnte sich die Wachstumsrate unter erhöhten Kohlendioxid-Konzentrationen auch nach vier Jahren nicht weiter nennenswert verbessern. Die Kalkbildung war sogar geringer als bei heutigen Zellen von Emiliania huxleyi. Die Studie zeigt, dass die evolutiven Effekte im Phytoplankton komplexer sind, als bisher angenommen.

In einem bislang einmaligen Evolutionsexperiment demonstrierten Wissenschaftler des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel und des Thünen-Instituts für Seefischerei, dass sich die wichtigste einzellige Kalkalge der Weltozeane, Emiliania huxleyi, nur begrenzt per Evolution an Ozeanversauerung anpassen kann. Dass die Anpassung per Evolution möglich ist, hatten GEOMAR-Wissenschaftler bereits 2012 bewiesen. Jetzt, vier Jahre nach Start des Experiments, hat sich die Anpassung in den Wachstumsraten der Kalkalge nur wenig verbessert. „Das Anpassungspotential von Emiliania huxleyi ist doch geringer als ursprünglich vermutet. Auch nach vier Jahren Evolution kann die Kalkalge die Beeinträchtigungen des Wachstums durch Versauerung nicht komplett kompensieren“, erklärt Dr. Lothar Schlüter, Erstautor der Studie und ehemaliger Doktorand am GEOMAR. Ihre Ergebnisse, die im Rahmen des Exzellenzclusters „The Future Ocean“ und des deutschen Forschungsverbunds BIOACID (Biological Impacts of Ocean Acidification) gewonnen wurden, stellen die Forscher jetzt im Fachmagazin Science Advances vor.

Basis der Untersuchung war eine einzelne Zelle der Kalkalge aus dem Raunefjord in Norwegen. Da sich Emiliania huxleyi im Labor etwa einmal am Tag durch Teilung vermehrt, konnten aus dem Isolat zahlreiche genetisch zunächst identische Kulturen gewonnen werden. Für die Studie wurden jeweils fünf Kulturen unter konstanter Temperatur und drei unterschiedlichen Konzentrationen an Kohlendioxid (CO2) gehalten: Einem Kontrollwert mit heutigen Verhältnissen, den Bedingungen, die nach den kritischsten Berechnungen des Weltklimarats gegen Ende dieses Jahrhunderts erreicht werden könnten, und dem höchstmöglichen Grad an Versauerung.

Nach vier Jahren, beziehungsweise 2100 Algen-Generationen später, stellten die Wissenschaftler fest: Die Zellen angepasster Populationen teilten sich zwar deutlich schneller als die nicht-angepassten, wenn beide der Ozeanversauerung ausgesetzt waren. Aber ihre Fitness verbesserte sich nur unwesentlich. Nach einem Jahr trat zunächst eine leichte Steigerung der Wachstumsraten relativ zu den Kontrollkulturen ein, später jedoch kaum noch – was im Gegensatz zu vielen anderen Evolutionsexperimenten steht. „Offenbar hat die Anpassung Grenzen, und die Beeinträchtigung der Wachstumsrate kann durch Evolution nicht komplett kompensiert werden“, so Schlüter.

Einzellige Kalkalgen wie Emiliania huxleyi binden in ihren Kalkplättchen (Coccolithen) Kohlenstoff. Diese Kalkplättchen spielen als Ballast eine wichtige Rolle für den Kohlenstofftransport in den tiefen Ozean – und somit für die Fähigkeit der Weltmeere, Kohlendioxid aus der Atmosphäre aufzunehmen und die Folgen des Klimawandels abzumildern. „Drei Jahre nach Beginn des Experiments war die Produktion an Kalkplättchen in den an höhere CO2-Konzentrationen angepassten Kulturen geringer als bei nicht-angepassten“, berichtet Prof. Thorsten Reusch, Leiter der Marinen Ökologie und Koordinator der Studie. „Uns überraschte, dass dieser Effekt nicht gleich zu Beginn des Experiments eintrat – denn wenn die Ozeanversauerung die biologische Kalkbildung behindert, müsste diese direkt reduziert werden.“ Entgegen der 2012 publizierten Ergebnisse über die Beobachtungen im ersten Jahr des Experiments konstatieren die Forscher jetzt, dass Evolution die negativen Effekte auf die Kalkbildung der einzelnen Mikroalgen verstärkt.

Die langfristig an Ozeanversauerung angepassten Kulturen hatten ihre Fähigkeit zur Bildung von Kalkplättchen jedoch nicht grundsätzlich reduziert. Wenn diese wieder heutigen CO2-Konzentrationen ausgesetzt wurden, war die Produktion wieder genauso hoch wie bei heutigen Kalkalgen. „Die Algen reduzieren die Kalzifizierung nur dann, wenn diese für sie aufwändiger ist – nämlich unter Ozeanversauerung“, betont Prof. Reusch. Zurzeit laufen weitere Untersuchungen, um die zellbiologischen Mechanismen zu verstehen, durch die ihre Kalkbildung reguliert wird. „Die evolutionäre Antwort von Phytoplankton-Organismen ist bei weitem komplexer als ursprünglich angenommen. Laborexperimente mit einzelnen Arten helfen uns, sie besser nachzuvollziehen. Nur mit diesem Wissen können wir abzuschätzen, wie der globale Wandel den Kohlenstoffkreislauf in Zukunft ändern wird.“

Diese Pressemitteilung findet ihr bei GEOMAR.

Neuste Entdeckungen zur Anpassung von Kalkalgen an die Ozeanversauerung findet ihr in unserem Beitrag „Was „Geisterfossilien” über vergangene Klimafolgen verraten“.

Ozeanversauerung: Schwer zu verdauen

Ozeanversauerung: beiger Seeigel auf dem lichtdurchfluteten Meeresgrund

© VFClark / Pixabay

Forscher:innen aus Schweden und Deutschland haben anhand der Larven des Grünen Seeigels (Strongylocentrotus droebachiensis) gezeigt, dass marine Lebewesen Nahrung in angesäuertem Wasser Nahrung schlechter verdauen können. Mithilfe neuer Testverfahren, die es ermöglichten, die Verdauung und die Verdauungsenzyme mariner Lebewesen zu untersuchen, belegte die Gruppe, dass ein niedriger pH-Wert einen hohen Energieaufwand zur Folge hat, weshalb sich die Verdauung verlangsamt.

In den Verdauungsorganen besteht nämlich – anders als bei Säugetieren – ein hoher pH-Wert. Das Milieu in den Verdauungsorganen muss folglich basisch sein, damit die Verdauung gut funktioniert. Daher wird der pH-Wert in den Organen aktiv auf einem gleichbleibenden hohen pH-Wert gehalten. Sinkt der pH-Wert im Meer, muss viel Energie aufgewendet werden, um die immer größer werdende Differenz zwischen dem pH-Wert des Verdauungstrakts und dem des Wassers aufrecht zu erhalten. Die Forscher:innen belegten, dass sich mehr pH-Wert regulierende Enzyme an der Darmwand befanden, wenn der pH-Wert des Wassers niedrig war. Wegen der gesunkenen Effektivität des Verdauungsprozesses benötigten Seeigel-Larven mehr Nahrung, um ihren Energiebedarf zu decken.

Gelangt immer mehr CO2 in die Atmosphäre, nehmen die Ozeane ihre Pufferwirkung wahr und lösen CO2. Dadurch sinkt der pH-Wert der Meere. Erwärmt sich jedoch die Erde und fischen wir auch in Zukunft so rigoros und ohne Rücksicht auf die marine Tierwelt, wird aber auch die Biodiversität sinken. Dadurch fänden die Seeigel noch weniger Nahrung als bisher, obwohl sie aufgrund der Ineffizienz ihres Verdauungssystems eigentlich mehr Nahrung bräuchten. Folgen könnten ein gehemmtes Wachstum, Unfruchtbarkeit oder das Sterben von Larven und adulten Tieren sein. Anhand dieses Beispiels erkennt man wieder einmal, wie sehr die Ozeane unter der Masse der menschengemachten Stressoren leiden, weil jedes einzelne Problem andere Probleme weiter verschärft.

Den Artikel Ozeanversauerung: Schwer zu verdauen vom 15.11.2013 findet ihr auf der Seite des GEOMARs.

Mehr Informationen zur Ozeanversauerung findet ihr in unserem Factsheet.

Hafenkooperation statt Flussvertiefungen!

geladenes Frachtschiff läuft in Hafen ein, um gelöscht zu werden

© Julius_Silver / Pixabay

Verschiedene Umweltverbände stellen sich gegen geplante Flussvertiefungen und Veränderungen an Häfen, da diese nicht notwendig wären, wenn die norddeutschen Hafenstädte kooperieren würden und ein tiefgangabhängiges Logistikkonzept ausgearbeitet würde, wodurch die Standorte nicht um die selben Schiffe konkurrieren müssten. Eine Kooperation zwischen Hamburg, Bremen und Niedersachsen würde folglich sowohl wirtschaftliche als auch ökologische Vorteile mit sich bringen. Flussvertiefungen, wie zum Beispiel die bereits erfolgten acht Elbvertiefungen, führen das Risiko mit sich, dass Flüsse in Dürresommern austrocknen oder sehr wenig Wasser führen. Dabei werden Dürresommer aufgrund der Erderwärmung immer wahrscheinlicher, weshalb eine Elbvertiefungen gerade jetzt die falsche Maßnahme ist.

Den Artikel Hafenkooperation statt Flussvertiefungen! vom 08.04.2013 findet ihr auf der Seite des WWF.

Mehr zum Thema findet ihr in der Pressemitteilung Weltwassertag: NABU fordert Gewässerpolitik von der Quelle bis zum Meer des NABU.

UPDATE: 2019 wurde unter Bundesverkehrsminister Scheuer trotz großen Widerstands vonseiten verschiedener Umweltverbände mit der 9. Elbvertiefung begonnen.

Meeresspiegelanstieg bedroht New York City

Fotomontage mit Überblick über Manhattan unter Wasser und Steg auf der Wasseroberfläche

© radex118 / Pixabay

Wissenschaftler:innen aus den USA legen nahe, dass New York spätestens 2100 stark von Überschwemmungen betroffen sein wird, die die gesamte Innenstadt überfluten werden. Indem sie zehn aktuelle Klimamodelle auswerteten, stellten sie fest, dass der Meeresspiegel an der Ostküste der USA besonders schnell ansteigt und bis zu 21 Zentimeter über dem globalen Durchschnitt liegen könnte. Außerdem könnte sich das Tempo des Meeresspiegelanstiegs bis 2100 im Vergleich zu heute verdoppeln. Die Ursache für den schnellen Anstieg sehen die Wissenschaftler:innen in dem Abschmelzen der Gletscher in Grönland und in der thermischen Ausdehnung des Wassers.

Diese Prognose ist fatal, da entlang der Ostseeküste der USA die größten Metropolen liegen, die sich zudem nur knapp über dem Meeresspiegel befinden. Schon ein Meeresspiegelanstieg um 45 Zentimeter wäre zum Beispiel fatal für New York City, das weniger als 40 Zentimeter über dem Meeresspiegel liegt.

Der Nordatlantik reagiert aufgrund der Nordatlantikzirkulation sehr sensibel auf klimatische Veränderungen. Indem Gletscher schmelzen, setzen sie sehr viel Süßwasser frei. Dies könnte diese natürliche thermohaline Zirkulation verlangsamen und weitere klimatische Veränderungen sowohl in Nordamerika als auch in Europa bewirken. Ein weiterer Strom, der durch die Erderwärmung beeinflusst wird und deshalb die Erderwärmung weiter befeuert, ist der Zirkumpolarstrom in der Antarktis. Diese zwei Strömungen sind Beispiele für Kipppunkte, die die Menschheit nicht überschreiten darf, wenn die Erderwärmung noch begrenzt werden soll.

Den Artikel Meeresspiegelanstieg bedroht New York City vom 17.03.2009 findet ihr bei SCINEXX.

Ein See flüssigen Kohlendioxids in 1300 Meter Tiefe

Unter der Meeresoberfläche strahlt die Sonne durch das blaue Wasser, nach unten hin wird es dunkler

© Cristian Palmer / Unsplash

Pressemitteilung, 01.09.2006, idw – Informationsdienst Wissenschaft

Japanisch-deutsches Meeresforscherteam entdeckt ungewöhnliches Ökosystem vor der Ostküste Taiwans:

Kohlendioxid ist ein Treibhausgas, dessen Konzentration in der Atmosphäre sich in den letzten Jahrzehnten signifikant erhöht hat und das für das weltweite Ansteigen der Temperaturen verantwortlich zu sein scheint. Unter Atmosphärendruck und Temperaturen um die 20° Celsius ist Kohlendioxid gasförmig. Erhöht man den Druck und senkt die Temperatur, verflüssigt sich das Gas bis es schließlich fest als Eis (CO2-Hydrat) vorliegt.
Hoher Druck und niedrige Temperaturen sorgen dann dafür, dass das Kohlendioxid nicht mehr als freies Gas in die Atmosphäre aufsteigen kann. Diese Eigenschaft erscheint in den Augen mancher Politiker und Wirtschaftsvertreter als die Lösung, um mit den steigenden Kohlendioxidkonzentrationen in der Atmosphäre fertig zu werden. Es gibt daher Pläne, dieses Gas in den Tiefen der Ozeane zu versenken.

Jetzt hat ein internationales Forscherteam vor der Ostküste Taiwans in 1300 Metern Tiefe einen natürlichen See aus flüssigem Kohlendioxid entdeckt und darüber in der Zeitschrift Proceedings of the National Academy of Sciences (PNAS) berichtet. Mit dem japanischen Tauchboot Shinkai 6500 untersuchten die Wissenschaftler dieses exotische Habitat auf unbekannte Lebensformen. Kohlendioxid in flüssiger Form ist eine Chemikalie, die das Leben für Mikroorgansimen auf eine harte Probe stellt. Wegen seiner Eigenschaften als Lösemittel wird es auch in für die Trockenreinigung von Kleidung genutzt. Die Forscher um Dr. Fumio Inagaki von JAMSTEC (Japan Agency for Marine Earth Science and Technology) und seine Kollegen vom Bremer Max-Planck-Institut für marine Mikrobiologie fanden einen negativen Effekt auf die mikrobielle Biomasse bestätigt: in der Nähe der Grenzschicht zwischen Kohlendioxidsee und dem Umgebungswasser sank die mittlere Mikrobendichte um den Faktor 100 vom 1 Milliarde Zellen pro Milliliter auf 10 Millionen. Über die Auswirkungen von CO2-Ansammlungen auf größere Lebewesen ist bisher wenig bekannt, die Forscher bemerkten aber die Abwesenheit von Tieren auf dem Meeresboden über dem CO2 See. Dafür hatten sich dort mikrobielle Spezialisten angesiedelt, die diese Kohlenstoffquelle anzapfen konnten. Nicht nur autotrophe (CO2-fixierende) Mikroorganismen sondern auch Methanzehrer haben dort ihre Nische. Das Methan und das CO2 entstehen geothermisch in dem nahegelegenen Hydrothermalfeld. Die Gase bahnen sich dann ihren Weg bis kurz unter dem Meeresboden wo sie vermutlich im Kontakt mit dem kalten Meereswasser zu Eis werden, es bilden sich Gashydrate. Das Forscherteam sieht den Fund dieses extremen Habitats als Glücksfall an, denn jetzt können sie die Auswirkungen von flüssigem Kohlendioxid auf das Tiefseeökosystem genau studieren.
Max-Planck-Forscherin Antje Boetius ist begeistert “ Als Wissenschaftler denkt man immer, man hätte schon alles gesehen, und dann findet man durch Zufall dieses Wunder in der Tiefsee.“

Wie geht es weiter?
Die Forscher um Fumio Inagaki planen nun weitere Untersuchungen des CO2-Sees im Rahmen einer multidisziplinären Forschungsfahrt. Die Herausforderung wird dabei sein, die physikalischen, chemischen und biologischen Auswirkungen der CO2 Ansammlung in situ, d.h. direkt am Meeresboden zu untersuchen, da sich das Gas beim Bergen der Proben schnell verflüchtigt und das die chemische Zusammensetzung der Probe und auch die mikrobiellen Prozesse stark verändern könnte.

Diese Pressemitteilung findet ihr bei idw – Informationsdienst Wissenschaft.

Unsere Ozeane fungieren als große Kohlenstoffsenke, sie können große Mengen an CO2 aufnehmen und sind daher extrem wichtig für den globalen Klimahaushalt. Mehr darüber könnt ihr in unserem Klima- und Forschungsblog nachlesen.

Langsam, alt und außergewöhnlich: methanfressende Einzeller tief im Meeresboden

Viele kleine verschiedene Einzeller tummeln sich auf dunkelgrünen Hintergrund

© Doc. RNDr. Josef Reischig, CSc. / Wikimedia Commons (CC-BY-SA-3.0)

Pressemitteilung, 22.02.2006, idw – Informationsdienst Wissenschaft

Urtümliche Einzeller tief im Meeresboden werden möglicherweise bis zu 2.000 Jahre alt. Geringe Nährstoffkonzentrationen, extrem niedriger Stoffwechsel und ungewöhnliche Stoffwechselwege machen es möglich. Ein deutsch-amerikanisches Team von Geochemikern und Mikrobiologen kam im Rahmen des Ozean Bohr Programms (ODP) jetzt mit Hilfe neuer Analysemethoden bislang nicht erforschten Archaeen auf die Spur und gewann Erkenntnisse über ihre Lebensweise und Rolle in der tiefen Biosphäre. Das Team unter Leitung des Geochemikers Prof. Kai-Uwe Hinrichs vom DFG-Forschungszentrum Ozeanränder (RCOM) in Bremen veröffentlichte seine Ergebnisse in der angesehenen Zeitschrift der Nationalen Akademie der Wissenschaften der USA (Proceedings of the National Academy of Sciences, U.S.A.).

„Erst seit relativ kurzer Zeit ist bekannt, dass tief unter dem Meeresboden im Sediment ein uns völlig unbekanntes Ökosystem existiert – die so genannte tiefe Biosphäre. Die dort lebenden Bakterien und Archaeen machen etwa ein Zehntel der lebenden Biomasse auf der Erde aus. „Archaeen sind einzellige Lebewesen, die mit Bakterien etwa so eng verwandt sind, wie Bakterien mit uns. Sie bilden die dritte große Domäne des Lebens, neben Bakterien und Eukaryonten – zu letzteren zählen Pflanzen und Tiere“, erläutert Doktorand Julius Lipp vom RCOM. Er teilt sich die Erstautorenschaft der Studie mit Jennifer F. Biddle, Doktorandin an der Pennsylvania State University. „Wir kannten Archaeen bisher hauptsächlich von lebensfeindlichen Orten: heiße Quellen in der Tiefsee und an Land, extrem salzige Lösungen, Erdöllagerstätten und eben unter enormem Druck unter fast nährstofflosen Bedingungen tief im Meeresboden“, so Studienleiter Hinrichs. „Die Organismen dort unten scheinen wichtige, uns vertraute Prozesse auf völlig andere Art und Weise auszuführen, wie zum Beispiel den Umsatz von Methan.“

Gerade dieser Prozess ist höchst interessant: Tief im Meeresboden produzieren Archaeen riesige Mengen Methan. Einen großen Teil bauen andere Archaeen wieder zu Kohlendioxid ab. Da Kohlendioxid als Treibhausgas 25-mal weniger wirksamer ist, als Methan, dämpft dies ihren Einfluss auf das Klima. Die Wissenschaftler untersuchten gezielt Schichten, in denen die Archaeen unter sauerstofffreien Bedingungen Methan zu Kohlendioxid zersetzen.

„Bisher kannten wir solche anaeroben Methanoxidierer nur aus Gebieten, wo relativ viel Methan vorkommt. Doch die Methankonzentrationen in den teilweise 90 Meter tiefen Sedimentschichten sind vergleichsweise gering“, so Hinrichs. „Genetische Vergleiche zeigten, dass es sich um neue Arten von Methanoxidierern handelt. Außerdem ist der Stoffumsatz des Ökosystems so niedrig, dass sich die Zellen theoretisch nur alle 100 bis 2.000 Jahre teilen.“

Was die Wissenschaftler fanden, hat sie fasziniert. „Unsere Untersuchungen vor der peruanischen Küste deuten darauf hin, dass zwar ein Großteil der Energie für das Ökosystem aus dem Abbau von Methan zu Kohlendioxid stammt. Aber der Kohlenstoff, den die Archaeen in ihre körpereigenen Verbindungen einbauen, stammt aus fossilem, organischen Material und nicht aus Methan“, erläutert Hinrichs. „Das ist anders, als in bisher bekannten Systemen.“

Herausgefunden haben sie all dies mit einer neuen Kombination von Methoden, die Hinrichs zusammen mit seinem Kollegen von der Pennsylvania State University Prof. House und anderen ausgeklügelt hat. Über die Analyse der Kohlenstoffisotope 12C und 13C in den Zellen der Archaeen konnten sie feststellen, welche Substanz die Organismen eingebaut haben. Dazu kam ein spezieller genetischer Fingerabdruck, den die Gruppe von Prof. Andreas Teske von der University of North Carolina, Chapel Hill, zum ersten Mal von diesem Lebensraum erhielt, sowie die Analyse artspezifischer, fettartiger Verbindungen. Zusammen zeigten diese Techniken den Wissenschaftlern welche und wie viele Mikroorganismen nicht nur vorhanden, sondern auch lebendig waren. „Analysiert man einfach alles vorhandene genetische Material, weiß man nicht, wann diese Organismen gelebt haben. In einem Ökosystem, das so langsam Stoffe abbaut, kann es sich leicht um längst abgestorbenes, altes Material handeln.“

Dieser Lebensraum im tiefen Ozeanboden ist uns heute noch weitgehend fremd: „Wir wissen weniger über ihn, als über manchen Himmelskörper. Neben der DFG und anderen Porgrammen, förderte die NASA Teile der Forschung – nicht zuletzt weil unsere Techniken auch für die Suche nach Leben auf anderen Planeten geeignet sind“, sagt Hinrichs.

Obwohl diese Vorgänge tief unter dem Meeresboden ablaufen, haben sie Einfluss auf unsere Umwelt. „Auch wenn die Prozesse extrem langsam sind: Da sie an allen Kontinentalhängen über riesige Flächen stattfinden, setzen die Archaeen riesige Mengen Methan zu Kohlendioxid um. So haben sie einen großen Einfluss auf den Treibhauseffekt“, betont Hinrichs.

Diese Pressemitteilung findet ihr beim idw.

Warum die Tiefsee außerdem von großer Bedeutung ist, könnt ihr bei unserer Kampagne DEEP SEA zum Tiefseebergbau nachlesen.

Auch Permafrostböden enthalten große Mengen an Methan und spielen eine große Rolle für die globale Klimakrise. Mehr darüber erfahrt ihr in unserem Klima- und Forschungsblog.

AWI: Nördlichstes Meeresforschungslabor der Welt fertig gestellt

Wellblechgebäude vor kahlem Berg nahezu ohne Schnee am Wasser

© CC BY-SA 3.0 / Wikimedia Commons

Pressemitteilung, 31. Mai 2005, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

In Ny-Ålesund auf Spitzbergen wird der norwegische Ministerpräsident Kjell Magne Bondevik am 1. Juni in Anwesenheit zahlreicher nationaler und internationaler Gäste das nördlichste Meeresforschungslabor der Welt einweihen. Das neue Labor wird von Kings Bay AS betrieben, einem norwegischen Staatsunternehmen, das die Infrastruktur im Forschungsstandort Ny-Ålesund zur Verfügung stellt. Die Baukosten von umgerechnet etwa 4 Mio. Euro wurden zum Großteil vom norwegischen Staat aufgebracht.

Spitzbergen gehört zu einer der nördlichsten Inselgruppen der Arktis. Der frühere Bergbauort Ny-Ålesund an der Westküste ist heute ein internationales Zentrum der modernen Arktisforschung und Umweltüberwachung. Insgesamt acht Nationen, die mit ihren Forschungsstationen dauerhaft in Ny-Ålesund vertreten sind, waren an der Planung des Meereslabors beteiligt. Nach der Grundsteinlegung im Juni 2004 entstand in nur einjähriger Bauzeit ein speziell auf die biologische Forschung ausgerichtetes Labor, das als neustes Gebäude den arktischen Forschungsstandort Ny-Ålesund komplettiert. ““Das ist ein großer Tag für Kings Bay AS und die Arktisforschung, da wir nun so weit sind, dass auch das letzte und wichtige naturwissenschaftliche Fachgebiet seine Einrichtung hat“, so Knut M. Ore, Aufsichtsratsvorsitzender der Kings Bay AS.

Jedes Jahr nutzen Forscher aus rund 20 Nationen die idealen Bedingungen in Ny-Ålesund, um biologische Forschung mit Untersuchungen der Atmosphäre und der Geologie der Arktis zu verknüpfen. Damit ist der Standort bestens geeignet, um globale Umweltveränderungen und deren Auswirkungen zu verfolgen. Seit 1988 arbeiten Wissenschaftler des Alfred-Wegener-Instituts für Polar- und Meeresforschung in Ny-Ålesund. Im August 1991 wurde die deutsche Forschungsstation ““Koldewey“ eingeweiht. Das Alfred-Wegener-Institut betreibt seit 2003 mit dem französischen Polarforschungsinstitut Paul Emile Victor (IPEV) in Ny-Ålesund eine kooperative Forschungsbasis. Mit über zehn Jahren Forschungserfahrung in Ny-Ålesund standen die Meeresbiologen des Alfred-Wegener-Instituts bei Planung und Bau des neuen Labors als wissenschaftliche Partner zur Seite.

Das Meeresforschungslabor stellt den Wissenschaftlern mehrere Laborräume mit speziell auf die Meeresforschung ausgerichteter Ausstattung zur Verfügung. Dazu gehören Hälterungsbecken mit direkter Frischwasserversorgung aus dem Fjord, mehrere Wärme- und Kälteräume sowie eine mit eigener Druckkammer ausgestattete wissenschaftliche Tauchbasis. Das Labor stand lange auf der Wunschliste der Arktisforscher und wartet mit seinem hohen technischen Standard jetzt auf die Nutzung von Meeresforschern aus aller Welt.

Diese Pressemitteilung findet ihr beim AWI.

Weitere Informationen erhaltet ihr hier.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der fünfzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Universität Hamburg: Wieviel CO2 gelangt ins Meer?

schwarz-weiß Bild, auf dem ein kleines Fischerboot in Wellen und Regen zusahen ist.

© Free-Photos / Pixabay

Pressemitteilung, 27. Mai 2005, Universität Hamburg

Seit Anfang Mai arbeiten Wissenschaftler im Zentrum für Meeres- und Klimaforschung (ZMK) der Universität Hamburg zusammen mit Kollegen an der Universität Heidelberg in dem neuen Projekt „Einfluss von Wind, Regen und Oberflächenfilmen auf die CO2-Transfergeschwindigkeit zwischen Atmosphäre und Ozean“, das von der Deutschen Forschungsgemeinschaft (DFG) bis Ende April 2008 mit ca. 230 000 Euro gefördert wird.

Beim sogenannten Treibhauseffekt binden Kohlendioxid (CO2) und einige andere Gase einen Teil der Sonnenenergie in der Erdatmosphäre – und können dadurch klimatische Bedingungen wie Hitze und Kälte, Regen und Dürre oder Häufigkeit und Stärke von Stürmen weltweit verändern. Inwiefern und in welchem Zeitraum der stetig steigende CO2-Gehalt in der Atmosphäre sich auf das globale Klima auswirken wird, kann gegenwärtig nur grob vorhersagt werden.

Der Grund dafür ist, dass die Anteile von CO2, die in der Atmosphäre verbleiben oder vom Ozean unter unterschiedlichen Bedingungen aufgenommen bzw. freigesetzt werden, nur ungenügend bekannt sind. Dieses Wissen ist jedoch eine Voraussetzung für die Verbesserung der komplexen Simulationsmodelle, die physikalische und chemische Zustandsänderungen in der Atmosphäre und im Ozean berechnen und Vorhersagen über künftige Klimaänderungen ermöglichen.

Grundlegende Informationen zum Gastaustausch zwischen Luft und Wasser können nur unter kontrollierten Experimentalbedingungen gewonnen werden, wie sie im Windwellenkanal der Universität Hamburg gegeben sind. Weltweit gehört er zu den wenigen Forschungseinrichtungen, die derartige Untersuchungen in großem Stil zulassen. Im Rahmen des neuen Forschungsprojektes sollen nun mit Hilfe dieser Versuchsanlage neuartige Gasaustauschexperimente unter kontrollierten physikalischen Randbedingungen durchgeführt werden, um den CO2-Transfer zwischen Ozean und Atmosphäre und seine Abhängigkeit von Umweltbedingungen besser zu verstehen.

Die Pressemitteilung findet ihr auf der Seite von der Hamburger Universität.

Weiterführende Informationen erhaltet ihr in diesen PDF-Dokumenten:

Bestimmung des zeitabhängigen CO2– Gasaustauschs über dem globalen eisfreien Ozean unter Verwendung von Winddaten aus satellitengestützten Messungen

F54 Gasaustausch  Wechselwirkung zwischen Ozean und Atmosphäre

//