Forschung

Was die Forschung untersucht und herausfindet, wird durch  Wissenstransfer greifbar und verständlich.
Und ermöglicht so sinnvolles und effektives Handeln für die Meere .

Zero-Waste: Vancouver verbietet Einwegplastik

Skyline Vancouvers vom Wasser mit rosanen Wolken hinter den Gebäuden

© 12019 / Pixabay

Vancouver ist die erste Stadt in Kanada, die ab Juni 2019 Plastikhalme, Styroporbecher und To-Go Behälter verbietet. Das ist ein großer Schritt für die Stadt in Richtung ihrer „Zero-Waste“ Strategie, die sie bis 2040 erreichen möchte. Und das Problem ist sehr groß: Jede Woche landen allein 4,6 Millionen Plastikbecher und -tüten im Müll, wovon Einwegverpackungen etwa 50 Prozent des gesamten Mülls ausmachen. Die finanzielle Folge ist, dass der Staat jedes Jahr etwa 2,5 Millionen Dollar Steuergelder dafür ausgibt, die Umwelt sauber zu halten.

Im Rahmen der Zero-Waste Strategie hat sich Vancouver nicht nur der Vermeidung von Plastikmüll sondern von Müll im allgemeinen verschrieben. Bis 2040 sollen die Menschen keine Lebensmittel mehr wegwerfen und unbrauchbare Lebensmittel sollen kompostiert oder zu Öl verarbeitet werden. Die Stadt will zudem die Langlebigkeit von Produkten durch Reparaturen fördern und dazu anregen, Güter möglichst mit anderen Haushalten zu teilen. Durch diese Maßnahmen soll der Konsum eingeschränkt werden. Nun ist zu hoffen, dass die Zero-Waste Strategie bald Nachahmer findet und Vancouver bis 2040 seine Ziele erreicht.

Den Artikel Vancouver will be the 1st Canadian city to ban plastic straws, foam cups and foam containers von Josh Duncan vom 17.05.2018 findet ihr bei Kelowna Now.

Den vollständigen Bericht zur „Complete Zero Waste 2040“ Strategie findet ihr in diesem PDF.

Auch DEEPWAVE setzt sich mit der BLUE STRAW Kampagne und dem NoStraw-Shop für ein Ende der Wegwerfprodukte ein.

Gi­gan­ti­sches sub­ma­ri­nes Kaltwasserkorallen-Gebirge

Verschiedene Kaltwasserkorallen in orange, rot und in Brauntönen wachsen am Meeresgrund

© Wolf Wichmann

Pressemitteilung, 04.03.2018, MARUM

Internationales Forscherteam untersucht Korallenriffe vor Mauretanien

Auf einer Länge von etwa 400 Kilometern erstreckt sich am Meeresboden vor der Küste Mauretaniens die weltweit größte zusammenhängende Kaltwasserkorallenstruktur. Dr. Claudia Wienberg vom MARUM – Zentrum für Marine Umweltwissenschaften an der Universität Bremen und ihre Kolleginnen und Kollegen haben untersucht, wie sich die Kaltwasserkorallen vor Mauretanien in den vergangenen 120.000 Jahren entwickelten. Ihre Ergebnisse haben sie in der Zeitschrift Quaternary Science Reviews veröffentlicht.

An­ders als tro­pi­sche Ko­ral­len, die in fla­chen, licht­durch­flu­te­ten Ge­wäs­sern le­ben, fin­det man Kalt­was­ser­ko­ral­len in Was­ser­tie­fen von meh­re­ren hun­dert bis tau­send Me­tern. Mehr als die Hälf­te der be­kann­ten, heu­te le­ben­den Ko­ral­len­ar­ten exis­tie­ren in völ­li­ger Dun­kel­heit in der Tief­see. Auch sie sind ge­schäf­ti­ge In­ge­nieu­re, die be­ein­dru­cken­de Ko­ral­len­rif­fe auf­bau­en. Maß­geb­lich an der Riff­bil­dung be­tei­ligt ist die Kalt­was­ser­ko­ral­len­art Lophelia pertusa. Sie ge­hört zu den Stein­ko­ral­len und bil­det stark ver­zweig­te, bus­ch­ar­ti­ge Ko­lo­ni­en. Wo vie­le sol­cher Ko­lo­ni­en ne­ben­ein­an­der exis­tie­ren, bil­den sich rif­far­ti­ge Struk­tu­ren, die neu­en Le­bens­raum bie­ten für ver­schie­de­ne an­de­re Tier­ar­ten wie Weich­ko­ral­len, Fi­sche, Kreb­se und Schwäm­me. Eine Kalt­was­ser­ko­ral­le sitzt ihr Le­ben lang fest ver­bun­den auf dem Sub­strat, auf dem die Lar­ve einst sie­del­te. Kalt­was­ser­ko­ral­len wach­sen be­vor­zugt auf ih­res­glei­chen und las­sen so über Zeit­räu­me von Jahr­tau­sen­den bis Jahr­mil­lio­nen rie­si­ge Struk­tu­ren am Mee­res­bo­den ent­ste­hen.

Alpen vor Mauretanien

Die welt­weit größ­te zu­sam­men­hän­gen­de Kalt­was­ser­ko­ral­len­struk­tur mit ei­ner Län­ge von etwa 400 Ki­lo­me­tern exis­tiert ent­lang der Mau­re­ta­ni­schen Küs­te. Hier er­rei­chen die Ko­ral­len­hü­gel Hö­hen von 100 Me­tern. „Die Grö­ße der Hü­gel und die Län­ge die­ser Struk­tu­ren ist wirk­lich spe­zi­ell. Im Grun­de ge­nom­men könn­te man hier tat­säch­lich von ei­nem Kalt­was­ser­ko­ral­len-Ge­bir­ge un­ter Was­ser spre­chen“, sagt Dr. Clau­dia Wien­berg vom MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten an der Uni­ver­si­tät Bre­men. „Vor Mau­re­ta­ni­en sind die ein­zel­nen Kaltwas­ser­ko­ral­len-Hü­gel ver­mut­lich über die Zeit zu­sam­men­ge­wach­sen. So et­was gibt es nir­gend­wo sonst in den Welt­mee­ren.“ Wien­berg war Teil ei­nes in­ter­na­tio­na­len Teams von Wis­sen­schaft­le­rin­nen und Wis­sen­schaft­lern, das an Bord des For­schungs­schiffs MA­RIA S. ME­RI­AN die­ses Ge­biet in­ten­siv be­prob­te, um mehr über die Ent­wick­lung der Kalt­was­ser­ko­ral­len zu er­fah­ren. In ei­ner Stu­die, die im Wis­sen­schafts­jour­nal Quaternary Science Reviews ver­öf­fent­licht wur­de, stel­len sie und ihre Kol­le­gin­nen und Kol­le­gen nun die Er­geb­nis­se vor.

Sauerstoffmangel versetzte Korallen in Ruhezustand

Prof. Dr. Nor­bert Frank und sein Team von der Uni­ver­si­tät Hei­del­berg ana­ly­sier­ten Ko­ral­len­frag­men­te von der Ober­flä­che und aus ver­schie­de­nen Tie­fen des Mee­res­bo­dens und be­stimm­ten de­ren Al­ter. Mit die­sen und wei­teren Un­ter­su­chun­gen konn­ten die Wis­sen­schaft­le­rin­nen und Wis­sen­schaft­ler nach­zeich­nen, wie sich die Kaltwasser­ko­ral­len vor Mau­re­ta­ni­en in den ver­gan­ge­nen 120.000 Jah­ren ent­wi­ckel­ten. So gab es in der Ver­gan­gen­heit im­mer wie­der Pha­sen, in de­nen die Wachs­tums­ra­ten Spit­zen­wer­te von 16 Me­tern pro 1000 Jah­re er­reich­ten. So schnell wächst nicht ein­mal das der­zeit größ­te Kalt­was­ser­ko­ral­len-Riff vor Nor­we­gen. Vor fast 11.000 Jah­ren sta­gnier­te das Wachs­tum der Mau­re­ta­ni­schen Ko­ral­len­hü­gel. Zu die­ser Zeit sind die Ko­ral­len wahr­schein­lich gänz­lich von den Hü­geln ver­schwun­den. Erst heu­te tau­chen dort wie­der ver­ein­zelt le­ben­de Kaltwas­ser­ko­ral­len auf. Das Wachs­tum der Ko­ral­len hängt von ver­schie­de­nen Um­welt­be­din­gun­gen ab, wie Was­ser­tem­pe­ra­tur, Sau­er­stoff­ge­halt, dem Nah­rungs­an­ge­bot und den vor­herr­schen­den Strö­mun­gen, die Nah­rung zu den un­be­weg­li­chen Kalt­was­ser­ko­ral­len trans­por­tie­ren. Von al­len Ein­flüs­sen mach­ten die For­schen­den den nied­ri­gen Sau­er­stoff­ge­halt von etwa 1 Mil­li­li­ter Sau­er­stoff pro Li­ter Was­ser als kri­ti­schen Fak­tor aus. „Das ist ex­trem we­nig. Ur­sprüng­lich wur­de an­ge­nom­men, dass bei 2,7 Mil­li­li­ter pro Li­ter die un­ters­te Gren­ze für Kaltwasserkorallen liegt, bei der sie zwar über­le­ben, aber kei­ne Rif­fe mehr bau­en kön­nen“, so Wien­berg. „Die ver­ein­zel­ten Kaltwasserkorallen auf den Hü­geln zei­gen zwar, dass sie zu­min­dest zeit­wei­se sehr ge­rin­ge Sau­er­stoff­ge­hal­te über­le­ben kön­nen, aber gut geht es ih­nen nicht.“

Die Er­geb­nis­se zei­gen, dass die Hoch­pha­sen der Kalt­was­ser­ko­ral­len, in de­nen die Hü­gel in die Höhe wuch­sen, mit Zei­ten zu­sam­men­fal­len, in de­nen mit Sau­er­stoff an­ge­rei­cher­te Was­ser­mas­sen aus dem Nor­den in das Ge­biet ström­ten. Wa­ren die Kalt­was­ser­ko­ral­len in der Ver­gan­gen­heit wie auch heu­te von sau­er­stoff­ar­men Was­ser­mas­sen aus dem Sü­den um­strömt, so wuch­sen die Hü­gel nicht oder nur sehr lang­sam. Je nach vor­herr­schen­dem Kli­ma ver­schob sich die Front zwi­schen die­sen Was­ser­mas­sen von Nord nach Süd und um­ge­kehrt, und die Ko­ral­len wur­den von sau­er­stoff­rei­chem, dann wie­der von sau­er­stoff­ar­mem Was­ser um­strömt.

Wien­bergs Theo­rie zu­fol­ge fan­den die Kaltwasserkorallen bei ex­trem nied­ri­gen Sau­er­stoff­ge­hal­ten in klei­ne­ren Schluch­ten zwi­schen den gro­ßen Hü­gel­struk­tu­ren Zu­flucht. In die­sen Can­yons fin­den sich heut­zu­ta­ge auch weit mehr Kalt­was­ser­ko­ral­len als auf den Hü­geln. Die schwim­men­den Ko­ral­len­lar­ven sind über eine ge­wis­se Stre­cke mo­bil, be­vor sie sich end­gül­tig nie­der­las­sen. So könn­ten Mi­gra­ti­ons­be­we­gun­gen von den Hü­geln in die Can­yons und – un­ter dem Ein­fluss der nörd­li­chen Was­ser­mas­sen – wie­der zu­rück statt­ge­fun­den ha­ben.

„Laut wis­sen­schaft­li­cher Pro­gno­sen wer­den sich die Zo­nen mit ge­rin­gem Sau­er­stoff­ge­halt in den Welt­mee­ren wei­ter aus­deh­nen“, so Wien­berg. „Auch wenn Kaltwasserkorallen eine hohe To­le­ranz zei­gen, so ist dies doch ein ent­schei­den­der Stress­fak­tor für die­se Öko­sys­te­me der Tief­see. Hin­zu kom­men die durch den Kli­ma­wan­del er­höh­ten Was­ser­tem­pe­ra­tu­ren so­wie die zu­neh­men­de Oze­an­ver­saue­rung.“

Diese Pressemittelung findet ihr beim MARUM.

Weitere Informationen zu Korallenriffen und die Auswirkungen der Klimakrise auf das Great Barrier Reef, findet ihr in unserem Forschungs- und Klimablog.

Ozeanversauerung – die Grenzen der Anpassung

Emiliania huxleyi-Zellen in einer elektronenmikroskopischen Aufnahme

© Kai Lohbeck / GEOMAR

Pressemitteilung, 11.07.2016, GEOMAR

Weltweit längstes Labor-Experiment mit der Kalkalge Emiliania huxleyi zeigt, dass evolutionäre Anpassung an Versauerung nur eingeschränkt möglich ist 

Die wichtigste einzellige Kalkalge der Weltmeere, Emiliania huxleyi, ist grundsätzlich in der Lage, sich durch Evolution an Ozeanversauerung anzupassen. Das bisher längste Evolutionsexperiment mit diesem Organismus zeigt jedoch, dass das Anpassungspotenzial nicht so groß ist, wie ursprünglich angenommen. So konnte sich die Wachstumsrate unter erhöhten Kohlendioxid-Konzentrationen auch nach vier Jahren nicht weiter nennenswert verbessern. Die Kalkbildung war sogar geringer als bei heutigen Zellen von Emiliania huxleyi. Die Studie zeigt, dass die evolutiven Effekte im Phytoplankton komplexer sind, als bisher angenommen.

In einem bislang einmaligen Evolutionsexperiment demonstrierten Wissenschaftler des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel und des Thünen-Instituts für Seefischerei, dass sich die wichtigste einzellige Kalkalge der Weltozeane, Emiliania huxleyi, nur begrenzt per Evolution an Ozeanversauerung anpassen kann. Dass die Anpassung per Evolution möglich ist, hatten GEOMAR-Wissenschaftler bereits 2012 bewiesen. Jetzt, vier Jahre nach Start des Experiments, hat sich die Anpassung in den Wachstumsraten der Kalkalge nur wenig verbessert. „Das Anpassungspotential von Emiliania huxleyi ist doch geringer als ursprünglich vermutet. Auch nach vier Jahren Evolution kann die Kalkalge die Beeinträchtigungen des Wachstums durch Versauerung nicht komplett kompensieren“, erklärt Dr. Lothar Schlüter, Erstautor der Studie und ehemaliger Doktorand am GEOMAR. Ihre Ergebnisse, die im Rahmen des Exzellenzclusters „The Future Ocean“ und des deutschen Forschungsverbunds BIOACID (Biological Impacts of Ocean Acidification) gewonnen wurden, stellen die Forscher jetzt im Fachmagazin Science Advances vor.

Basis der Untersuchung war eine einzelne Zelle der Kalkalge aus dem Raunefjord in Norwegen. Da sich Emiliania huxleyi im Labor etwa einmal am Tag durch Teilung vermehrt, konnten aus dem Isolat zahlreiche genetisch zunächst identische Kulturen gewonnen werden. Für die Studie wurden jeweils fünf Kulturen unter konstanter Temperatur und drei unterschiedlichen Konzentrationen an Kohlendioxid (CO2) gehalten: Einem Kontrollwert mit heutigen Verhältnissen, den Bedingungen, die nach den kritischsten Berechnungen des Weltklimarats gegen Ende dieses Jahrhunderts erreicht werden könnten, und dem höchstmöglichen Grad an Versauerung.

Nach vier Jahren, beziehungsweise 2100 Algen-Generationen später, stellten die Wissenschaftler fest: Die Zellen angepasster Populationen teilten sich zwar deutlich schneller als die nicht-angepassten, wenn beide der Ozeanversauerung ausgesetzt waren. Aber ihre Fitness verbesserte sich nur unwesentlich. Nach einem Jahr trat zunächst eine leichte Steigerung der Wachstumsraten relativ zu den Kontrollkulturen ein, später jedoch kaum noch – was im Gegensatz zu vielen anderen Evolutionsexperimenten steht. „Offenbar hat die Anpassung Grenzen, und die Beeinträchtigung der Wachstumsrate kann durch Evolution nicht komplett kompensiert werden“, so Schlüter.

Einzellige Kalkalgen wie Emiliania huxleyi binden in ihren Kalkplättchen (Coccolithen) Kohlenstoff. Diese Kalkplättchen spielen als Ballast eine wichtige Rolle für den Kohlenstofftransport in den tiefen Ozean – und somit für die Fähigkeit der Weltmeere, Kohlendioxid aus der Atmosphäre aufzunehmen und die Folgen des Klimawandels abzumildern. „Drei Jahre nach Beginn des Experiments war die Produktion an Kalkplättchen in den an höhere CO2-Konzentrationen angepassten Kulturen geringer als bei nicht-angepassten“, berichtet Prof. Thorsten Reusch, Leiter der Marinen Ökologie und Koordinator der Studie. „Uns überraschte, dass dieser Effekt nicht gleich zu Beginn des Experiments eintrat – denn wenn die Ozeanversauerung die biologische Kalkbildung behindert, müsste diese direkt reduziert werden.“ Entgegen der 2012 publizierten Ergebnisse über die Beobachtungen im ersten Jahr des Experiments konstatieren die Forscher jetzt, dass Evolution die negativen Effekte auf die Kalkbildung der einzelnen Mikroalgen verstärkt.

Die langfristig an Ozeanversauerung angepassten Kulturen hatten ihre Fähigkeit zur Bildung von Kalkplättchen jedoch nicht grundsätzlich reduziert. Wenn diese wieder heutigen CO2-Konzentrationen ausgesetzt wurden, war die Produktion wieder genauso hoch wie bei heutigen Kalkalgen. „Die Algen reduzieren die Kalzifizierung nur dann, wenn diese für sie aufwändiger ist – nämlich unter Ozeanversauerung“, betont Prof. Reusch. Zurzeit laufen weitere Untersuchungen, um die zellbiologischen Mechanismen zu verstehen, durch die ihre Kalkbildung reguliert wird. „Die evolutionäre Antwort von Phytoplankton-Organismen ist bei weitem komplexer als ursprünglich angenommen. Laborexperimente mit einzelnen Arten helfen uns, sie besser nachzuvollziehen. Nur mit diesem Wissen können wir abzuschätzen, wie der globale Wandel den Kohlenstoffkreislauf in Zukunft ändern wird.“

Diese Pressemitteilung findet ihr bei GEOMAR.

Neuste Entdeckungen zur Anpassung von Kalkalgen an die Ozeanversauerung findet ihr in unserem Beitrag „Was „Geisterfossilien” über vergangene Klimafolgen verraten“.

Meeresboden als Langzeitdeponie für Plastik

Ein steiniger Meeresboden

© Yannis Papanastasopoulos / Unsplash

Pressemitteilung, 10.02.2016, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Kieler Meeresforscher untersuchen Abbau von Plastiktüten im Sediment

10.02.2016/Kiel. Kieler Meeresforscher haben untersucht, ob und wie schnell Bakterien Plastiktüten im Sediment des Meeresbodens abbauen. Das Ergebnis: Weder klassische Tüten aus Polyethylen noch sogenannte kompostierbare Kunststofftüten hatten sich nach hundert Tagen im Meeresboden überhaupt verändert. Die Studie ist jetzt in der internationalen Fachzeitschrift Marine Pollution Bulletin erschienen.

Gemeinsame Pressemitteilung des Exzellenzclusters ‚Ozean der Zukunft‘ und des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel

Egal ob an den Küsten der Antarktis oder auf den Sedimenten der Tiefsee – es gibt mittlerweile kaum noch einen Ort auf der Erde, an dem kein Plastikmüll zu finden ist. Doch wie lange Kunststoffe in den Meeren verbleiben, bis sie abgebaut sind, ist bislang kaum untersucht. Eine Gruppe von Wissenschaftlerinnen und Wissenschaftlern des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel, der Christian-Albrechts-Universität zu Kiel und des Kieler Exzellenzclusters „Ozean der Zukunft“ hat jetzt die Veränderungen von handelsüblichen Polyethylen-Tüten mit denen von sogenannten kompostierbaren Plastiktüten in zwei für den Meeresboden typischen chemischen Umgebungen untersucht. Wie das Team in der internationalen Fachzeitschrift Marine Pollution Bulletin schreibt, haben Bakterien die kompostierbaren Tüten zwar deutlich schneller besiedelt. „Ein Abbau oder auch nur eine Veränderung des Materials war bei beiden Tüten nach hundert Tagen aber nicht feststellbar“, sagt Alice Nauendorf, Erstautorin der Studie.

Für die Untersuchungen hat das Team Sedimentproben aus der Eckernförder Bucht in der westlichen Ostsee genutzt. „In den oberen Schichten dieser Sedimentproben war noch Sauerstoff vorhanden, in den unteren nicht. Das ist typisch für Meeresböden weltweit“, erklärt die Meeresbiologin Nauendorf und ergänzt: „Diese Schichten unterscheiden sich auch in den Bakterienarten, die dort leben.“

In einem Laborexperiment wurden die beiden Tütensorten in jeweils sauerstoffhaltigem und sauerstoffarmen Sediment für rund hundert Tage eingelagert. Die sogenannte kompostierbare Tüte bestand nach Herstellerangaben aus biologisch abbaubarem Polyester, aus Maisstärke sowie aus nicht näher bezeichneten Inhaltsstoffen.

Anschließend nutzte das Team eine ganze Reihe von Analysemethoden wie hochpräzisen Gewichtsmessungen, die Fluoreszenzmikroskopie oder auch Rasterelektronenmikroskop-Untersuchungen, um mögliche Veränderungen des Materials nachzuweisen. „Wir konnten deutlich sehen, dass die kompostierbaren Tüten stärker mit Bakterien besiedelt waren – in den sauerstoffhaltigen Schichten fünfmal stärker, in den sauerstofffreien Schichten sogar achtmal stärker als die Polyethylen-Tüte“, sagt Nauendorf.

Gleichzeitig zeigten die Untersuchungen aber auch, dass sich das Material beider Tüten in den Hundert Tagen des Versuchs nicht verändert hat. „Es gab weder eine Gewichtsabnahme noch chemische Veränderungen. Demnach hat also kein Abbau stattgefunden“, betont Prof. Dr. Tina Treude, Hauptautorin der Studie, die mittlerweile an der University of California , Los Angeles (UCLA) arbeitet. Der genaue Grund für die unterschiedliche Besiedlung mit Bakterien blieb noch offen. „Wir konnten in der Polyethylen-Tüte einen antibakteriellen Stoff nachweisen. Möglicherweise hat er eine intensivere Besiedlung durch Bakterien unterbunden“, so Nauendorf.

Doch trotz der noch offenen Fragen zeigt der Versuch, dass Plastikabbau in den Sedimenten der Meere – wenn überhaupt – nur sehr langsam vonstattengeht. Auch die Besiedlung mit Bakterien ist offensichtlich keine Garantie für die chemische Umsetzung eines Stoffes. „Die Studie legt die Befürchtung nahe, dass die Sedimente der Meere eine Langzeitdeponie für Plastikmüll werden können. Was das mit den Ökosystemen der Meere macht, müssen zukünftige Studien noch zeigen“, sagt Professorin Treude.

Diese Pressemitteilung findet ihr beim GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel.

Hier findet ihr die zugehörige Studie.

Nicht nur größere Plastikteile, auch Mikroplastik belastet den Meeresboden noch stärker, als bisher angenommen. Auf der anderen Seite wurde in einer Studie gezeigt, dass Plastikmüll am Meeresboden als neuer Wohnort für einige Tiere dienen kann. Die Wissenschaftler:innen vermuten, dass diese neue Besiedelung starke Auswirkungen auf das Ökosystem hat.

 

Ozeanversauerung: Schwer zu verdauen

Ozeanversauerung: beiger Seeigel auf dem lichtdurchfluteten Meeresgrund

© VFClark / Pixabay

Forscher:innen aus Schweden und Deutschland haben anhand der Larven des Grünen Seeigels (Strongylocentrotus droebachiensis) gezeigt, dass marine Lebewesen Nahrung in saurerem Wasser schlechter verdauen können. Mithilfe neuer Testverfahren, die es ermöglichten, die Verdauung und die Verdauungsenzyme mariner Lebewesen zu untersuchen, belegte die Gruppe, dass ein niedriger pH-Wert einen hohen Energieaufwand zur Folge hat, weshalb sich die Verdauung verlangsamt.

In den Verdauungsorganen besteht nämlich – anders als bei Säugetieren – ein hoher pH-Wert. Das Milieu in den Verdauungsorganen muss folglich basisch sein, damit die Verdauung gut funktioniert. Daher wird der pH-Wert in den Organen aktiv auf einem gleichbleibenden hohen pH-Wert gehalten. Sinkt der pH-Wert im Meer, muss viel Energie aufgewendet werden, um die immer größer werdende Differenz zwischen dem pH-Wert des Verdauungstrakts und dem des Wassers aufrecht zu erhalten. Die Forscher:innen belegten, dass sich mehr pH-Wert regulierende Enzyme an der Darmwand befanden, wenn der pH-Wert des Wassers niedrig war. Wegen der gesunkenen Effektivität des Verdauungsprozesses benötigten Seeigel-Larven mehr Nahrung, um ihren Energiebedarf zu decken.

Gelangt immer mehr CO2 in die Atmosphäre, nehmen die Ozeane ihre Pufferwirkung wahr und lösen CO2. Dadurch sinkt der pH-Wert der Meere. Erwärmt sich jedoch die Erde und fischen wir auch in Zukunft so rigoros und ohne Rücksicht auf die marine Tierwelt, wird auch die Biodiversität sinken. Dadurch fänden die Seeigel noch weniger Nahrung als bisher, obwohl sie aufgrund der Ineffizienz ihres Verdauungssystems eigentlich mehr Nahrung bräuchten. Folgen könnten ein gehemmtes Wachstum, Unfruchtbarkeit oder das Sterben von Larven und adulten Tieren sein. Anhand dieses Beispiels erkennt man wieder einmal, wie sehr die Ozeane unter der Masse der menschengemachten Stressoren leiden, weil jedes einzelne Problem andere Probleme weiter verschärft.

Den Artikel Ozeanversauerung: Schwer zu verdauen vom 15.11.2013 findet ihr auf der Seite des GEOMARs.

Mehr Informationen zur Ozeanversauerung findet ihr in unserem Factsheet.

Forscher:innen finden Leben in der ozeanischen Kruste

Grafik zeigt die verschiedenen Bereiche der Erdkruste

© USGS, TomCatX / Wikimedia Commons

Forscher:innen haben tief in der ozeanischen Kruste Mikroorganismen nachgewiesen, nachdem sie in Proben, die eine Expedition 2004 vor der Küste des Bundesstaates Oregon genommen hatte, Gene identifizierten, die zur Verarbeitung von Methan und Sulfaten notwendig sind. Um dann auszuschließen, dass diese Gene von schon gestorbenen Mikroorganismen stammen, haben die Forscher:innen daraufhin versucht, diese Mikroorganismen zu kultivieren, da dafür lebende Mikroorganismen notwendig sind. Nach sieben Jahren konnte schließlich Methan – ein Stoffwechselprodukt der Mikroorganismen – nachgewiesen werden, sodass klar war, dass sich in den Proben lebende Mikroorganismen befinden.

Die Forscher:innen wollen nun untersuchen, wie viele verschiedene Arten von Bakterien sich in der Erdkruste befinden und welchen Einfluss diese Mikroorganismen auf den Kohlenstoff-Kreislauf haben. Es ist bereits bekannt, dass die ozeanische Kruste eine große Kohlenstoffsenke darstellt, während durch sie viele Schwefelverbindungen in den Ozean gelangen. Dadurch, dass diese Mikroorganismen scheinbar Sulfate verarbeiten, haben sie folglich einen Einfluss auf das Gleichgewicht im Ozean.

Den Artikel Forscher finden Leben tief unter dem Meer von Nina Weber vom 14.03. 2013 findet ihr bei Spiegel Online.

Auch in Bezug auf das Auftauen des Permafrostbodens spielen Bakterien eine große Rolle. Taut der Permafrostboden wegen der Erderwärmung auf, zersetzen Bakterien die im Permafrostboden enthaltenen organischen Materialien und stoßen das Treibhausgas Methan aus, wodurch sich die Erde weiter erwärmt. Daher wird das Schmelzen des Permafrostbodens als ein Kipppunkt bezeichnet.

DBG: Lingulodinium polyedrum lässt das Meer leuchten

Nachtansicht von sich am Strand brechender Welle, die durch Lingulodinium polyedrum blau leuchtet

© MierCatPhotography / Pixabay

Pressemitteilung, 02. Januar 2013, Sektion Phykologie der Deutschen Botanischen Gesellschaft

Algenforscher haben den Einzeller Lingulodinium polyedrum zur Alge des Jahres gewählt.
Der mit einem Panzer und zwei Geißeln ausgestattete Dinoflagellat fasziniert nicht nur die Forschenden sondern auch Skipper und Strandgänger, weil er sich unter bestimmten Bedingungen massenhaft vermehren und nachts das Meer blau leuchten lassen kann. Die Wissenschaftler, die den Dinoflagellaten auswählten und in der Sektion Phykologie der Deutschen Botanischen Gesellschaft organisiert sind, wollen damit eine Algenart würdigen, deren Leuchtfähigkeit fasziniert, einen ausgeprägten Tag-Nacht-Rhythmus hat und als Sensor genutzt wird, wie PD Dr. Mona Hoppenrath vom Deutschen Zentrum für marine Biodiversitätsforschung DZMB bei Senckenberg am Meer in Wilhelmshaven ausführt.

Schwimmt im Phytoplankton

Lingulodinium polyedrum gewinnt seine Energie wie Pflanzen durch Photosynthese und lebt deshalb in den lichtdurchfluteten oberen Schichten temperierter und warmer Meere. Wie alle Dinoflagellaten hat Lingulodinium zwei Geißeln, mit denen er sich im Wasser fortbewegt. Eine der beiden Geißeln treibt ihn mit Wellenbewegungen an, sodass sein Körper rotiert. So kam die Art zu ihrem Namen, da „dineo“ sich drehen oder wirbeln bedeutet. Nachts wandern Dinoflagellaten um sich rotierend mehrere Meter in die Tiefe, wo sie Nährstoffe aufnehmen, wie etwa Nitrat. Sind genügend Nährstoffe vorhanden, und hat das Meer eine für sie optimale Temperatur, kann sich der Flagellat massenhaft vermehren. Wie viele Dinoflagellaten ist Lingulodinium außen von einer Hülle aus stabilen Platten geschützt, weshalb diese Lebewesen im deutschen Sprachraum oft als „Panzergeißler“ bezeichnet werden. In unseren Breiten machen Dinoflagellaten gemeinsam mit Kieselalgen den Hauptteil des pflanzlichen Planktons aus. Unter für sie günstigen Bedingungen können sich Dinoflagellaten massenhaft vermehren und dann das Meer rötlich, orange oder braun färben, je nach den in ihnen enthaltenen Farbstoffen.

Wie der Dinoflagellat das Meer färbt

Lingulodinium polyedrum ist einer der wenigen Dinoflagellaten, die mit einer biochemischen Reaktion in ihrem Inneren blaues Licht erzeugen können. Dieses Biolumineszenz genannte Phänomen bewerkstelligt der Einzeller in winzigen, abgeschlossenen, organartigen Abteilen in seinen Zellen, den sogenannten Szintillonen, die das dazu notwendige Enzym und ein Binde-Eiweiß für das Substrat enthalten. Lingulodinium erzeugt blaue Lichtblitze, wenn Scherbewegungen an ihm rütteln oder die Zellen aufgebrochen werden und glimmt, besonders gegen Ende der Nacht. Werden mehrere Millionen Zellen gleichzeitig geschüttelt, etwa durch Boote oder sich brechende Wellen, verschwimmen Lichtblitze und Glimmen der einzelnen Zellen zu einem Leuchten. Das ist besonders gut an manchen Küsten während der Nacht zu beobachten. In unserer Region tritt das Phänomen im Sommer vor der Küste Helgolands auf, wo es allerdings von dem Dinoflagellaten Noctiluca erzeugt wird. An nordeuropäischen Küsten ist aufgrund des kühlen Klimas dagegen kaum mit einer Massenvermehrung von Lingulodinium zu rechnen.

Leuchten zur Feindabwehr?

Noch ist nicht endgültig geklärt, warum Lingulodinium polyedrum nachts überhaupt leuchtet. Einer bislang nicht widerlegten Hypothese zufolge locken die Dinoflagellaten damit Raubtiere an, die die sie selbst bedrohenden Feinde auffressen. „Versuche zeigten, dass Fische, die Räuber von Dinoflagellaten beispielsweise  kleine Krebse fressen, in der Nacht effektiver jagen, wenn die Dinoflagellaten leuchten. Dies wird als „burglar alarm“ Hypothese, also als eine Art Alarmanlagenfunktion diskutiert“ erklärt Hoppenrath, die bereits 21 neue Arten der weltweit etwa 2000-2500 vorkommenden Arten von Dinoflagellaten erstmals beschrieben und mit einem Namen versehen hat. „Es ist wichtig, die einzelnen Arten zu benennen und wissenschaftlich exakt zu beschreiben, weil das die Grundlage für viele wissenschaftliche wie angewandte Disziplinen ist. Das ist wichtig für Ökosystem- oder Biodiversitätsforscher, für Evolutionsbiologen und für Menschen im Fischereiwesen“, fasst die auf die Klassifikation (Taxonomie) von Dinoflagellaten spezialisierte Biologin ihre Arbeit zusammen.

Mehr interdisziplinäre Forschung ist notwendig

Lingulodinium polyedrum wird mit Substanzen in Verbindung gebracht, die auch von anderen Panzergeißlern bekannt sind. Vermutlich ist er in der Lage, die als Yessotoxin und Saxitoxin bezeichneten Stoffe herzustellen, die in der Lebensmittelsicherheit eine Rolle spielen. Für den Menschen werden sie dann bedenklich, wenn sie in der Nahrungskette angereichert werden. Damit Menschen keine zu großen Mengen davon aufnehmen, weil sie Schalentiere wie Muscheln oder Krebse essen, die das Meerwasser filtrieren und diese Substanzen daher im Laufe ihres Lebens anreichern, hat die Europäische Behörde für Lebensmittelsicherheit (EFSA) 2009 Grenzwerte für den Verzehr von Schalentierfleisch festgelegt. In welchen Mengen Lingulodinium polyedrum die beiden Stoffe produziert, ist aber bislang nicht exakt bestimmt. Da aber nie ganz auszuschließen ist, ob sich nicht auch andere, bedenklichere Organismen in den leuchtenden Wellen befinden, sollte Vorsicht beim Baden walten. Denn andere Arten von Dinoflagellaten können durchaus relevante Mengen Toxine produzieren, die dem Menschen auch ohne Verzehr gefährlich werden können. Daher sei es so wichtig, Dinoflagellaten genau zu klassifizieren, betont Hoppenrath. Zur weiteren Forschung sollten nicht nur Toxikologen oder Ernährungsforscher, sondern auch auf die Verwandtschaftsverhältnisse (Taxonomie) spezialisierte Biologen beitragen.

Lingulodinium hat ein Nachtleben

Für Lingulodinium polyedrum interessieren sich auch andere Forscher, weil er einem ausgeprägten Tag-Nacht-Rhythmus folgt. Das Meeresleuchten entsteht hauptsächlich nachts. „In der Nacht gibt es eine viel größere Anzahl von Szintillonen als am Tag. Diese enthalten die nachts auch vermehrt vorkommenden Eiweiße, die an der biolumineszenten Reaktion beteiligt sind, “, führt Professorin Dr. Maria Mittag aus, die den Regulatiosmechanismus eines dieser Eiweiße des Tag-Nacht-Rhythmus an Lingulodinium polyedrum erforschte, als dieser noch den wissenschaftlichen Namen Gonyaulax polyedra trug. Auch die Wanderung von den oberen Meeresschichten in die Tiefe werde bei Lingulodinium polyedrum von seiner inneren Uhr gesteuert. „Interessanterweise ist die Periode des Biolumineszenz-Rhythmus bei Lingulodinium aber etwas kleiner als 24 Stunden, im Gegensatz zum Menschen, bei dem der Schlaf-Wach-Rhythmus – ohne die tägliche Justierung durch den Wechsel von Sonne und Nacht – bei etwa 25 Stunden liegt“, erklärt Professorin Mittag.

Lingulodinium polyedrum fasziniert Biologen, weil er noch einige genetische Geheimnisse birgt. Bislang weiß niemand genau, warum dieser winzige Organismus viel mehr Erbsubstanz enthält, als der sehr viel größere Mensch oder warum die Gene für manche Eiweiße in tausenden von Kopien vorkommen, wie etwa die des genannten Bindeproteins oder das des Farbstoffes Peridinin, der ihm seine orange-braune Farbe verleiht. Die vielen Kopien erschweren es auch, ihn wissenschaftlich zu untersuchen, um etwa molekularbiologische Prozesse zu enträtseln.

Nutzung als Sensor

Wegen seiner Leuchtfähigkeit kann der Panzergeißler Lingulodinium polyedrum auch zum Messen von Giften und / oder neuen Wirkstoffen genutzt werden. Beispielsweise kann bei toxischen Substanzen der Zeitpunkt bestimmt werden, ab wann die meisten Lingulodinium-Zellen absterben und zerfallen, was am stärkeren Aufleuchten zu erkennen ist. Zum anderen können Lingulodinium-Zellen als Sensor für Versuche über Zellstress dienen, der sich ebenfalls über die Biolumineszenz messen lässt. „Als Testsystem eignet sich Lingulodinium besonders gut, weil er sich recht gut kultivieren lässt, weil schon einiges über ihn bekannt ist und die Biolumineszenz automatisiert zu messen ist“, erklärt Hoppenrath. „Außerdem kann mit diesem Einzeller die Zahl von Tierversuchen, mit denen sonst solche Erkenntnisse gewonnen werden, vermindert werden“.

Diese Pressemitteilung findet ihr bei der Sektion Phykologie der Deutschen Botanischen Gesellschaft.

20.000 Pinguine durch Ölpest im Atlantik bedroht

Ölpest: Felsenpinguin mit gelben langen Haarbüscheln seitlich des Kopfes

© Frankenstein / Pixabay

Nachdem ein Frachtschiff gekentert ist, sind rund 20.000 seltene Felsenpinguine an der südafrikanischen Inselgruppe Tristan da Cunha durch das ausgelaufene Öl bedroht. Tierschützer:innen konnten etwa 500 Pinguine in eine Tierstation bringen, um sie dort von dem Öl zu befreien, bevor ihnen das Reinigungsmittel ausging. Da das Gebiet eines der abgelegensten der Welt ist, dauert es Tage, bis Nachschub vorhanden ist. Es ist ein Wettlauf mit der Zeit, da das Gefieder der Pinguine durch die Ölschicht seine isolierende Wirkung verliert und die Tiere durch Unterkühlung sterben könnten. Zudem versuchen viele Tiere ihr Gefieder mit ihrem Schnabel zu säubern. Dadurch gelangen die giftigen Substanzen auch in die Körper und können ebenfalls zum Tod der geschützten Pinguine führen.

Den Artikel Pinguine durch Ölpest im Atlantik bedroht vom 24.03.2011 findet ihr auf der Seite der OÖNachrichten.

Der Artikel Öl – Tödliche Gefahr für die Meere vom NABU geht noch tiefer auf die weiteren Auswirkungen von jeder einzelnen Ölpest ein.

Weitere Informationen erhaltet ihr in unserem Infotext Öl- und Gasplattformen.

Da Schiffsöl nicht nur Umweltzerstörungen hervorruft, wenn es ausläuft, wird nach Alternativen gesucht. In unseren Artikeln NABU-Studie zu Schiffstreibstoff: Klimaschutz mit Ammoniak vom 30.06.2021 und Flüssiggas klimaschädlicher als gedacht vom 20.01.2020 beleuchten wir zwei zur Diskussion stehenden Treibstoffe.

Bioplastik ist nicht immer „grün“

Eine Tüte aus Bioplastik mit Äpfeln drin

© John Cameron / Unsplash

Pressemitteilung, 22.10.2010, pressetext

Gesamter Lebenszyklus genauso schädlich wie bei Erdöl-Polymeren

(pte021/22.10.2010/13:40) – Plastik, das aus Pflanzenbasis hergestellt wurde, ist mindestens genauso umweltschädlich wie Kunststoffe aus Erdöl. Das zeigt sich, wenn man sowohl die Nachhaltigkeit des Materials selbst als auch den Lebenszyklus der nötigen Ressourcen berücksichtigt, kommen Forscher der University of Pittsburgh http://www.pitt.edu in der Fachzeitschrift „Environmental Science & Technology“ zum Schluss.

Zwar haben Biopolymere den Vorteil, dass sie biologisch abbaubar und weniger toxisch sind und erneuerbare Ressourcen verwenden. Was ihre Gesamtbilanz aber zunichte macht, ist die Herstellung der Ausgangsstoffe. „Die Landwirtschaft und die chemische Verarbeitung, die zur Produktion nötig sind, verschlingen ebenfalls Energie und setzen Unmengen an Düngemittel und Pestiziden in die Umwelt frei“, berichtet Studienleiter Michaelangelo Tabone.

Umwelt leidet an Produktion

Die Forscher untersuchten dazu zwölf verschiedene Polymere, die als Grundlage Zucker und Maisstärke (PLA-NW und PLA-G), Maisstängel (PHA-S), Maiskörner (PHA-G), Erdöl (PVC, PC, HDPE, PET, LDPE) oder Propengas (PP) verwenden sowie auch eine Hybridplastik, die sowohl auf Erdöl als auch Pflanzen basiert (B-PET). Zunächst analysierten sie den gesamten Lebenszyklus einer 30 Gramm schweren Kugel des jeweiligen Polymers in Hinsicht auf Umwelt, Gesundheit, Energieeinsatz, Rohmaterialien und zur Produktion nötige Chemikalien. Dann prüften sie, wie verträglich und energieintensiv das Endprodukt und dessen Abbau ist.

Jedes Bioplastik hat ihre Tücken, so das Ergebnis. Alle Biopolymere überdüngen die Gewässer und zerstören die Ozonschicht. Zwei der Maisvarianten tragen maßgeblich zur Versäuerung der Umwelt bei, jene auf Maiskörner-Basis braucht zudem beträchtliche Mengen fossiler Treibstoffe. Selbst im Vergleich der krebserregenden Inhaltsstoffe liegt Bioplastik nur im Mittelfeld. Insgesamt am schlechtesten schnitt Hybrid-Plastik ab, das laut den Forschern alle möglichen Nachteile sowohl der Erzeugung als auch der Abbaubarkeit in sich vereint.

Besser vermeiden als ersetzen

Umweltexperten sehen die Suche nach dem am wenigsten umweltschädlichen Kunststoff mit Skepsis. „Die Frage sollte bereits lauten, ob wir diese kurzlebigsten Verpackungsstoffe überhaupt brauchen“, kritisiert Markus Meissner vom österreichischen Ökologieinstitut http://www.ecology.at gegenüber pressetext. Bioplastik sei derzeit noch teuer, werde jedoch von Lebensmittelketten bereits für erste Produktverpackungen verwendet. „Man ersetzt ein Einwegprodukt durch ein anderes. Den ernormen Entwicklungsaufwand dafür sollte man besser für Abfallvermeidung und Wiederverwendung einsetzen“, so der Experte für Ressourcenmanagement.

Im Vorfeld der Fußball-Europameisterschaft 2008 hat das Ökologieinstitut mit dem deutschen Öko-Institut und der Schweizer carbotech AG die von den Veranstaltern als „umweltfreundlich“ beworbenen Getränkebecher aus Maisplastik untersucht. Die ökologische Nutzen der biologischen Abbaubarkeit ist zu vernachlässigen gegenüber dem Erzeugungsaufwand, so das Ergebnis (pressetext berichtete: http://pressetext.com/news/080110025/ ).

Diese Pressemitteilung findet ihr bei pressetext.

In einer anderen Studie wurde der Abbau im Meer von Bioplastik mit dem von Plastik aus Erdölbasis verglichen – Unterschiede wurden erschreckend wenige festgestellt.

//