Neues AWI-Wärmebild-Kamerasystem hilft Forschern, Großwale rund um die Uhr vor Lärm zu schützen

Physiker des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung, haben an Bord des Forschungsschiffes Polarstern erfolgreich ein Wärmebild-Kamerasystem getestet, das Großwale sowohl am Tage als auch bei Nacht bis auf eine Entfernung von fünf Kilometern automatisch an ihrem Blas erkennt. Wie die Wissenschaftler in einer aktuellen Studie des Fachmagazins PLOS ONE berichten, hat das Kamerasystem bei sieben Expeditionen in die Arktis und Antarktis deutlich mehr Wale erfasst als Forscher, die mit dem Fernglas Ausschau nach den Tieren gehalten hatten.

Rammarbeiten beim Bau von Windparks oder der Einsatz von Luftpulsern bei der Suche nach Öl und Gas im Meer führen zu Lärmbelastungen im Umfeld der Arbeiten. Um sicherzustellen, dass Meeressäuger keinen Schaden nehmen, wenn sie den Geräten nahe kommen, erlassen Regulierungsbehörden sogenannte Mitigationsauflagen zum Schutz der Tiere. Eine Auflage kann lauten, die Luftpulser abzuschalten oder die Rammarbeiten einzustellen, sowie sich ein Wal der Schallquelle zu weit nähert. Wie aber kann die Besatzung eines Schiffes oder einer Arbeitsplattform das Meer flächendeckend sowie rund um die Uhr nach Walen absuchen – und das wochenlang?

Dem Menschen sind in dieser Frage klare Grenzen gesetzt: „Wer einmal für längere Zeit auf das Meer geschaut hat, der weiß, wie schnell die Augen müde werden und die Konzentration nachlässt. Hinzukommt: Wir können nicht gleichzeitig in alle Richtungen schauen und bei Dunkelheit sehen wir so gut wie nichts. Deshalb war es bisher vor allem nachts schwierig, Wale in Schiffs- oder Plattformnähe zu entdecken“, sagt Dr. Daniel Zitterbart, Physiker am Alfred-Wegener-Institut (AWI).

Er und Kollegen aus der AWI-Arbeitsgruppe „Ozeanische Akustik“ haben aus diesem Grund die Infrarot-Kamera „FIRST-Navy“ der Firma Rheinmetall Defence Electronics zu einem Instrument für automatische Wal-Sichtungen weiterentwickelt und das High-Tech-System in den vergangenen vier Jahren auf sieben Polarstern-Expeditionen erfolgreich getestet: „Die Wärmebild-Kamera ist in 28 Metern Höhe am Polarstern-Krähennest angebracht. Sie sitzt auf einem Stabilisator, der die Schiffsbewegungen ausgleicht, dreht sich fünf Mal pro Sekunde um die eigene Achse und erzeugt einen 360-Grad-Videostream der Schiffsumgebung, auf dem warme Regionen heller dargestellt werden als kältere. Der Wärmesensor ist so empfindlich, dass er Temperaturunterschiede von weniger als ein hundertstel Grad Celsius abbildet. Walblas, der zumindest in subpolaren und polaren Regionen deutlich wärmer ist als das Wasser, ist demzufolge auf den Aufnahmen als hellgraue oder weiße Fontäne zu erkennen“, erläutert Daniel Zitterbart.

Die Auswertung der Bilddaten übernimmt eine von ihm entwickelte Software. „Walblas wird auf den Wärmebildaufnahmen mit einem ganz spezifischen Muster hell und wieder dunkler. Unsere Software teilt nun jedes der aufgezeichneten Bilder in 31 600 Kästchen ein und untersucht diese Kästchen einzeln nach Helligkeitsunterschieden. Anschließend entscheidet der Rechner, ob die Dynamik eines wahrgenommenen Helligkeitsunterschiedes den Merkmalen eines Walblases entspricht oder nicht. So entdecken wir auch jene Tiere, die nur für einen ganz kurzen Atemzug aufgetaucht sind“, sagt der Physiker.

Die Treffergenauigkeit des Infrarot-Messsystems überzeugt: Auf einer der sieben Arktis- und Antarktis-Expeditionen, von denen die Forscher im Fachmagazin PLOS ONE berichten, verzeichnete die Kamera etwa doppelt so viele Wale in Schiffsnähe wie Wissenschaftler, die mit dem Fernglas nach den Tieren Ausschau gehalten hatten. „Die entscheidende Stärke unseres Systems liegt darin, dass wir mit ihm rund um die Uhr und vor allem bei Dunkelheit, Großwale wie Blau-, Finn-, Glatt- oder Grauwale mit hoher Genauigkeit lokalisieren und auf diese Weise besser schützen können. Denn wann immer ein Tier vom System detektiert wird, werden entsprechende Sicherheitsmaßnahmen veranlasst“, sagt Dr. Olaf Boebel, Leiter der AWI-Arbeitsgruppe „Ozeanische Akustik“ und Mitautor der Studie.

Bei Dunkelheit, so zeigten die Vergleichsmessungen, ist die Datenqualität der Wärmebildkamera wegen der fehlenden Lichtreflexionen auf der Wasseroberfläche sogar noch höher als am Tage. Und selbst bei Eiseskälte, rauer See und Windstärke 6 konnten sich die AWI-Forscher auf ihr System verlassen. „Die Einsatzmöglichkeiten des Gerätes gehen weit über jene Wetterbedingungen hinaus, bei denen seismische Untersuchungen durchgeführt werden“, sagt Olaf Boebel. Das Ein- und Ausbringen der Luftpulser beispielsweise wird schon ab einer Wellenhöhe von sechs Metern schwierig.

Fehleranfällig zeigte sich der Wal-Detektor lediglich, wenn viele Vögel gleichzeitig durch das Sichtfeld der Kamera flogen oder zahllose kleinere Eisbrocken auf der Wasseroberfläche trieben. „Unsere Auswertungssoftware haben wir bisher vor allem auf Fahrten im offenen Wasser zugeschnitten, denn vor allem dort kommen Luftpulser für seismische Untersuchungen zum Einsatz“, so Daniel Zitterbart.

Er arbeitet nach dem erfolgreichen Härtetest für Technik und Software schon an der nächsten System-Erweiterung: „Wir haben jetzt eine zweite, normale Kamera an das Infrarot-System gekoppelt. Sie fotografiert vom Krähennest aus automatisch jeden vom System gemeldeten Wal. Auf diese Weise können wir im Anschluss seine Art bestimmen und erhalten Daten über die Größe und Verteilung der Großwal-Populationen“, sagt Daniel Zitterbart. Ein weiteres Plus: Der Wärmebild-Waldetektor gibt für jeden detektierten Wal auch die Standort- und Entfernungsdaten an. Mit deren Hilfe können die AWI-Wissenschaftler dann Bewegungsprofile der Tiere erstellen und ihr Verhalten bei Begegnungen mit Schiffen untersuchen.

Das bewährte Wal-Ortungssystem soll ab dem kommenden Jahr dauerhaft am Krähennest Polarsterns installiert und dann in zunehmendem Maße bei Expeditionen genutzt werden. Das Entwicklerteam plant außerdem, das System in Meeresgegenden mit einer Wassertemperatur von mehr als 10 Grad Celsius zu testen. Seine ersten Einsätze in den polaren und subpolaren Regionen hat es mit Bravour bestanden.

Das Projekt wurde gefördert durch das deutsche Bundesministerium für Bildung und Forschung (grant Nr. BMBF 03F0479I) und das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (grant Nr. BMU 370891101-01).

Weitere Informationen zum Infrarot-Wal-Detektierungsgerät:
Aufnahmeleistung: 5 thermografische 360-Grad-Bilder pro Sekunde
Bildgröße: 7200 x 576 Pixel (4 Megapixel)
Erzeugte Datenmenge pro Tag: 3,5 Terabyte
Bildausschnitt: Die Aufnahmen zeigen die Meeresoberfläche vom Schiffsnahbereich (Mindestradius etwa 120 Meter) bis zum Horizont.
Einsatzgebiet: Meeresgebiete mit einer Wassertemperatur von maximal 10 Grad Celsius
Zielobjekte: Großwale, die beim Ausatmen an der Meeresoberfläche einen Walblas erzeugen. Die Detektion von Kleinwalen wie Delfine oder Schweinswale wird bislang nicht verfolgt und ist Gegenstand zukünftiger Forschungs- und Entwicklungsprojekte.

Hinweise für Redaktionen:
Die Studie ist unter folgendem Originaltitel erschienen:
Daniel P. Zitterbart, Lars Kindermann, Elke Burkhardt, Olaf Boebel (2013): Automatic Round-the-Clock Detection of Whales for Mitigation from Undersea Noise Impacts, PLOS ONE, http://dx.plos.org/10.1371/journal.pone.0071217

//